In the definition of the limit of a sequence, why can't we replace $ \lt \epsilon $ with $ \le \epsilon $?
Here is a proof I thought for the equivalence of the two definitions, is there anything wrong with it?
Let $ \{a_n\}_{n=1}^\infty \, $ be a sequence in $ \mathbb{R} $.
Assume $ \forall \epsilon \gt 0 \, \exists N : \forall n \gt N, \left|a_n - L\right| \lt \epsilon. $ Then, of course $ \left| a_n - L \right| \le \epsilon, \forall \epsilon \gt 0 $, because $ \lt \subseteq \le $.
Assume $ \forall \epsilon \gt 0 \, \exists N : \left|a_n - L\right| \le \epsilon $. Given $ \epsilon \gt 0 $, $ \exists N : \forall n \gt N,\left|a_n - L\right| \le \frac{\epsilon}{2} \lt \epsilon.$