Let $(K,\nu)$ be a local field whit characteristic $0$ and residue field $k=\mathbb{F}_q$, $q=p^f$ whit $p$ prime. I have to prove that there is a finite number of isomorphism classes of extension $K’$ of $K$ such that $[K’:K]=n$. I have no idea how to prove it, but I have two advice:
- $O_K$ is a compact group
- Corollary of Krasner’s lemma: Let $f(x)=xⁿ+a_1x^{n-1}+…+a_n,g(x)=xⁿ+b_1x^{n-1}+…+b_n \in O_K[x]$ be polynomial whit $f(x)$ irreducible polynomial. If exist $M>0$ Such that $\nu(a_i-b_i)>M>n \cdot max\{\nu ‘(\alpha_i-\alpha_j|1 \leq i \neq j \leq n\}$,whit $\alpha_1,…,\alpha_n$ zeros of $f(x)$ in a Galois extension $K’$ of $K$ and $\nu’$ is the valuation on $K’$, then $g(x)$ is irreducible polynomial and $K[x]/(f(x)) \cong K[x]/(g(x))$
Anyone have any ideas?