Hint: For all $\sigma,\tau\in S_n$ for any $n$, with
$$\tau=(t_{i_1}t_{i_1+1}\cdots t_{i_1+k_1})\cdots (t_{i_j}t_{i_j+1}\cdots t_{i_j+k_j})$$
we have
$$\sigma\tau\sigma^{-1}=(\sigma(t_{i_1})\sigma(t_{i_1+1})\cdots\sigma (t_{i_1+k_1}))\cdots (\sigma(t_{i_j})\sigma(t_{i_j+1})\cdots\sigma( t_{i_j+k_j})),$$
where $\sigma(x)$ is $\sigma$ evaluate at $x$.
For example,
$$\begin{align}
((123)(45))\circ (\color{red}{12})\circ((123)(45))^{-1}&=(((123)(45))(\color{red}1)((123)(45))(\color{red}2))\\
&=(23),
\end{align}$$
which checks out, since
$$\begin{align}
1&\xrightarrow{((123)(45))^{-1}}3\xrightarrow{(12)}3\xrightarrow{(123)(45)}1\\
2&\xrightarrow{((123)(45))^{-1}}1\xrightarrow{(12)}2\xrightarrow{(123)(45)}3\\
3&\xrightarrow{((123)(45))^{-1}}2\xrightarrow{(12)}1\xrightarrow{(123)(45)}2\\
4&\xrightarrow{((123)(45))^{-1}}5\xrightarrow{(12)}5\xrightarrow{(123)(45)}4\\
5&\xrightarrow{((123)(45))^{-1}}4\xrightarrow{(12)}4\xrightarrow{(123)(45)}5
\end{align}$$