Set $d=1$ and borrow the notation given in the post. For fixed $\sigma>0$, I managed to prove the following:
- A counter-example for the reverse Jensen inequality as stated.
- $\forall\epsilon>0\exists C_\epsilon>0$ such that $\forall\sigma>\epsilon$ the following reverse Jensen inequality is true with $C=C_\epsilon$. I also show that $C_\epsilon\ll\frac{1}{\epsilon^2}$.
Below set $g:=f-\Bbb E[f(X)]$. Then $g:\Bbb R\rightarrow\Bbb R$ is $1$-Lipschitz and the reverse Jensen inequality is equivalent to $\log\Bbb E[e^{g(X)}]\leq C\sigma^2$.
[The proofs for $(*)$, $(**)$ and $(***)$ that are used below will be given at the end of this post.]
1. Counterexample: Set $f(x)=-|x|$. Then $g(x)=-|x|+\sqrt\frac{2}{\pi}\sigma$ and
\begin{align}
\log\Bbb E[e^{g(X)}]
&=\log\Bbb E[e^{-|X|+\sqrt\frac{2}{\pi}\sigma}]\\
&=\sqrt\frac{2}{\pi}\sigma+\log\Bbb E[e^{-|X|}] \tag{1.1}
\end{align}
where
\begin{align}
\Bbb E[e^{-|X|}]
&=\frac{1}{\sqrt{2\pi}\sigma}\int_{\Bbb R} e^{-|x|}e^\frac{-x^2}{2\sigma^2}\,dx\\
&=\sqrt\frac{2}{\pi}e^{\sigma^2/2}\int_0^\infty e^{-\frac{(u^2+2\sigma u+\sigma^2)}{2}}\,du\\
&\approx e^{-\sigma^2/2}
\end{align}
[for small $\sigma$, which is what we care about for the counterexample] using which in $(1.1)$ gives,
\begin{align}
\log\Bbb E[e^{g(X)}]
&=\sqrt\frac{2}{\pi}\sigma+\log\Bbb E[e^{-|X|}]\\
&\approx\sqrt\frac{2}{\pi}\sigma+\frac{1}{2}\sigma^2
\end{align}
The counter-example checks out because of the linear term in the lower bound, which causes issues bounding for $\sigma$ near $0$.
2. Proof:
$$\Bbb E[e^{g(X)-g(0)}]+g(0) = \sum_{n=0}^\infty \frac{1}{(2n)!}\Bbb E[(g(X)-g(0))^{2n}] + \sum_{n=1}^\infty \frac{1}{(2n+1)!}\mathbb [(g(X)-g(0))^{2n+1}] \tag{2.1}$$
where I have used that $\Bbb E[g(X)]=0$. I will need the following moments of the half-normal distribution below:
$$ \Bbb E[|X|^{2n}] = \frac{\sigma^{2n}(2n)!}{n!2^n} \text{ and } \Bbb E[|X|^{2n+1} = \sqrt\frac{2}{\pi}\sigma^{2n+1}2^n n! $$
which give
\begin{align}
\sum_{n=0}^\infty \frac{1}{(2n)!}\Bbb E[(g(X)-g(0))^{2n}]
&\leq \sum_{n=0}^\infty \frac{1}{(2n)!}\Bbb E[|X|^{2n}]\\
&=\sum_{n=0}^\infty \frac{\sigma^{2n}}{n!2^n}=\sum_{n=0}^\infty \frac{(\sigma^{2}/2)^n}{n!}\\
&=e^{\sigma^2/2} \tag{2.2}
\end{align}
and
\begin{align}
\sum_{n=1}^\infty \frac{1}{(2n+1)!}\mathbb [(g(X)-g(0))^{2n+1}]
&\leq \sum_{n=1}^\infty \frac{1}{(2n+1)!}\Bbb E[g(X)^{2n+1}]\\
&=\sum_{n=1}^\infty \sqrt\frac{2}{\pi}\sigma^{2n+1}\frac{2^n n!}{(2n+1)!}\\
&\leq \sqrt\frac{2}{\pi}\sigma\sum_{n=1}^\infty \frac{(\sigma^2/2)^n}{n!} \tag{$*$}\\
&=\sqrt\frac{2}{\pi}\Big[ e^{\sigma^2/2}-1\Big] \tag{2.3}
\end{align}
where in $(*)$ I have used that $\forall m\in\Bbb N_0, \frac{2^{2m} m!}{(2m+1)!}\leq\frac{1}{m!}$. I wanted this inequality to be true for the result, and with a little tinkering found that it was!
Finally it can be showed that
$$ e^{\sigma^2/2} + \sqrt\frac{2}{\pi}\Big[ e^{\sigma^2/2}-1\Big] \leq e^{\sigma^2}. \tag{$**$}$$
Using $(2.2)$, $(2.3)$ and $(**)$ in $(1)$ gives
$$\Bbb E[e^{g(X)-g(0)}] + g(0) \leq e^{\sigma^2}$$
which upon rearrangement reads
$$\Bbb E[e^{g(X)}]\leq e^{\sigma^2+g(0)}-g(0)e^{g(0)} \tag{2.4}.$$
We can control $g(0)$ above as follows:
$$|g(0)|=\Bbb |f(0)-E[f(X)]|\leq \Bbb E[|X|]=\sqrt\frac{2}{\pi}\sigma \tag{2.5}$$
Using $(2.5)$ in $(2.4)$ gives,
\begin{align}
\Bbb E[e^{g(X)}]
&\leq e^{\sigma^2+\sqrt\frac{2}{\pi}\sigma}+\sqrt\frac{2}{\pi}\sigma e^{\sqrt\frac{2}{\pi}\sigma}\\
\implies \log\Bbb E[e^{g(X)}]&\leq \sqrt\frac{2}{\pi}\sigma+\log\Big(e^{\sigma^2}+\sqrt\frac{2}{\pi}\sigma\Big)\tag{2.6}
\end{align}
Note now that $\epsilon<\sigma\iff\sigma<\sigma^2/\epsilon$, and
\begin{align}
\sqrt\frac{2}{\pi}\sigma+e^{\sigma^2}
&\leq 2\sigma+e^{\sigma^2}\\
&\leq e^{\frac{2}{\epsilon}\sigma^2}+e^{\sigma^2}\\
&\leq e^{(\frac{2}{\epsilon}+\frac{\log 2}{\epsilon^2})\sigma^2}. \tag{$***$}
\end{align}
Using $(***)$ in $(2.6)$ gives
\begin{align}
\log\Bbb E[e^{g(X)}]
&\leq \Big(\sqrt\frac{2}{\epsilon\pi}+\frac{2}{\epsilon}+\frac{\log 2}{\epsilon^2}\Big)\sigma^2
\end{align}
and thus $C_\epsilon=\sqrt\frac{2}{\epsilon\pi}+\frac{2}{\epsilon}+\frac{\log 2}{\epsilon^2}$ suffices.
Proof for $(*)$:
\begin{align}
\frac{2^{2m}m!}{(2m)!}&=\frac{m!}{1\cdot\frac{2}{2}\cdot\frac{3}{2}\dots\frac{2m}{2}\cdot\frac{2m+1}{2}}\leq\frac{1}{m!}
\end{align}
Proof for $(**)$:
Follows from
$$e^{-\sigma^2/2} + \sqrt\frac{2}{\pi}\Big[ e^{-\sigma^2/2}-e^{-\sigma^2}\Big]\leq 1$$
Proof for $(***)$:
We want to find $k=k(\epsilon)$ such that
$$ e^{\frac{2}{\epsilon}\sigma^2}+e^{\sigma^2}\leq e^{k\sigma^2},$$
which is equivalent to $e^{(\frac{2}{\epsilon}-k)\sigma^2}+e^{(1-k)\sigma^2}\leq 1$, holds true. If $k$ is large, then noting that $\sigma>\epsilon$, the LHS will be largest when $\sigma=\epsilon$. Thus it will suffice to require the following:
\begin{align}
\epsilon(2-\epsilon k)&\leq\log(1/2)\\
\epsilon^2 (1-k)&\leq\log(1/2)
\end{align}
from which we see that any $k\geq \frac{\log 2}{\epsilon^2}+\frac{2}{\epsilon}$ suffices.