Differentiating the integral w.r.t. $a$ yields $$ \begin{aligned} \frac{\partial}{\partial a} \int_{0}^{1} \frac{x^{a}-1}{\ln x} d x =\int_{0}^{1} \frac{x^{a} \ln x}{\ln x} d x =\left[\frac{x^{a+1}}{a+1}\right]_{0}^{1} &=\frac{1}{a+1} \end{aligned} $$
Integrating both sides from $a=0$ to $a=t$ yields the result
$$ \boxed{\int_{0}^{1} \frac{x^{t}-1}{\ln x}dx=\ln (t+1)} $$ where $Re(t)>-1.$
Question: Can it be evaluated without Feynman?