As already said in answers and comments, using $\sin(x)=t$
$$\int_0^{\frac \pi2} \dfrac{\log(\sin(x))}{\sqrt{1 + \cos^2(x)}}\,dx=\int_0^1 \frac{\log (t)}{\sqrt{(1-t^2)(2-t^2)} }$$
There is a nasty explicit solution in terms of the Gaussian hypergeometric function
$$\, _2F_1\left(\frac{3}{4},\frac{3}{4};1;-8\right)$$ and its derivatives with respect to its first, second and third arguments.
Probably easier, would be to expand
$$\frac{1}{\sqrt{(1-t^2)(2-t^2)} }=\frac 1{\sqrt 2} \sum_{n=0}^\infty a_n\, t^{2n}$$ where the $a_n$ form the sequence
$$\left\{1,\frac{3}{4},\frac{19}{32},\frac{63}{128},\frac{867}{2048},\frac{3069}{
8192},\frac{22199}{65536},\frac{81591}{262144},\frac{2428451}{8388608},\frac
{9119601}{33554432},\frac{68993757}{268435456},\cdots\right\}$$ and use the fact that
$$\int_0^1 t^{2n}\,\log(t)\,dt=-\frac{1}{(2 n+1)^2}$$ Using the coefficients listed above, the result is
$$-\frac{14645443896353066473}{12947100671567462400 \sqrt{2}}=-0.799862$$ while the exact result is $-0.802496$.
Inverse symbolic calculators do not identify
$$-0.80249561860378193216746878737636023438643059976849493589569975292440979\cdots$$
and the proposed closest approximation (for an absolute error of $2.904\times 10^{-8}$) is $$-\frac{ \sqrt{11} \left(19+3 \sqrt{3}\right)}{100}$$
Running my own trigonometric inverse calculator, for an absolute error of $2.529\times 10^{-9}$
$$-\cos \left(\frac{23 \pi }{195}\right) \cos \left(\frac{44 \pi }{259}\right)$$