-1

A convex function satisfies $f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)$ for all $0\leq t\leq 1$. Then does this also imply that

$$f(t_1x_1+t_2x_2+\cdots+ t_kx_k)\leq t_1f(x_1)+t_2f(x_2)+\cdots +t_kf(x_k)$$ whenever $\sum_i t_i=1$ with $t_1, t_2, \ldots, t_k\geq 0$ ?

Andrew
  • 571

1 Answers1

2

Yes! It does. The proof is by induction over $k\in\mathbb{N}$, the base case is just the definiton of convexity. Try writin it.
Hint: $$t_1x_1+\cdots+t_kx_k=t_1x_1+(1-t_1)[\frac{t_2}{1-t_1}x_2\cdots+\frac{t_k}{1-t_1}x_k]$$