In order to find $$ \int\frac{dx}{(x^2+1)\sqrt{x^2+1}} $$ we set $t=\arctan x$. Then $x=\tan t$ and $dt=\frac{dx}{x^2+1}$, so $$ \int\frac{dx}{(x^2+1)\sqrt{x^2+1}}=\int\frac{dt}{\sqrt{\frac{1}{\cos^2t}}}=\int\cos tdt\\ =\sin t+C=\sin(\arctan x)+C $$ Now, since $$ \sin(\arctan x)=\sqrt{\frac{\tan^2(\arctan x)}{\tan^2(\arctan x)+1}} $$ the answer is $\frac{x}{\sqrt{x^2+1}}+C$.
My Question: Is there another way to find this integral without using trigonometry?