I know a Vandermonde's identity as
$$ \sum_{i=0}^c {a \choose i} {b \choose c-i} = {a+b \choose c} $$ $$ a, b, c \in \mathbb{N} $$
I am looking for a way to simplify these expressions: $$ \sum_{i=0}^c {a \choose i} {b \choose c-i}(-1)^i\tag{1} $$ $$\sum_{i=x_1}^{x_2} {a \choose i} {b \choose c-i}(-1)^i\quad (x_1\ge 0,\; x_2\le a).\tag{2} $$