Assume there are two events A and B such as $A := \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E}[f]\right) z_{i} \geq \frac{\epsilon}{8}$
and $B := \exists f \in \mathcal{F}: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f] z_{i} \geq \frac{\epsilon}{8}$
and P(A) and P(B) is given to me! I need to Calculate the Upperbound of the P(C) where C is defiend as $$ C:= \mathbb{P}\left(\exists f \in \mathcal{F}: \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) z_{i} \geq \frac{\epsilon}{4}\right)$$
I have used the upper bound $P(A \cup B) \leq P(A) + P(B)$
Further I have reached upto
Given to me := \begin{align} \mathbb{P}\left (\frac{1}{n}\left| \sum_{i=1}^n (f(x_i) - \mathbb{E}[f])z_i\right| \geq \frac{\epsilon}{8} \right ) \leq 2\exp\left (-\frac{\epsilon^2nd}{9^4cL^2} \right) ... (1) \end{align}
\begin{align} \mathbb{P}\left(\exists f \in \mathcal{F}: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f] z_{i} \geq \frac{\epsilon}{8}\right) \leq \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} z_{i}\right| \geq \frac{\epsilon}{8}\right) ...(2)\end{align}
\begin{align} \mathbb{P}(A \cup B)\\ &= \mathbb{P} \left( \underbrace{ \left( \frac{1}{n} \left|\sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E}[f]\right) z_{i}\right| \geq \frac{\epsilon}{8} \right)}_{A} \bigcup \underbrace{\left( \exists f \in \mathcal{F}: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f] z_{i} \geq \frac{\epsilon}{8}\right)}_{B}\right)\\ &\leq \mathbb{P}\left ( \frac{1}{n}\left| \sum_{i=1}^n (f(x_i) - \mathbb{E}[f])z_i\right| \geq \frac{\epsilon}{8} \right ) + \mathbb{P}\left(\exists f \in \mathcal{F}: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f] z_{i} \geq \frac{\epsilon}{8}\right)\\ &\leq 2 \exp\left (-\frac{\epsilon^2nd}{9^4cL^2} \right) + \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} z_{i}\right| \geq \frac{\epsilon}{8}\right) && \text{(Using Inequality 1 and 2)}\\ &\leq 2 \exp\left (-\frac{\epsilon^2nd}{9^4cL^2} \right) + 2 \exp \left(\frac{-n \epsilon^{2}}{ 8^{3}}\right) && \text{(By Hoeffding's inequality)} \end{align}
Can I proof LHS as with event C. I am not getting clue? Can anyone please help!
My question is := can I reduce $P(A \cup B) = P(C)$ if yes then how?
N.B > I am trying to understand the proof of Theorem 2(Page -$7$) in the paper "A Universal Law of Robustness via isoperimetry" by Bubeck and Sellke.