I'm trying to prove below result, taken from this answer. Could you have a check on my attempt?
Let $V$ be a vector space. A finite set $\{x_1, \ldots, x_n\} \subset V$ is called affinely independent if $\lambda _1 x_1 +\ldots+\lambda_n x_n=0$ and $\lambda_1 +\ldots +\lambda_1=0$ imply $\lambda_1 =\cdots = \lambda_n=0$. Clearly, linear independence implies affine independence.
Theorem: Let $V$ be a $n$-dimensional Hausdorff topological vector space and $A:=\{x_1, \ldots, x_{n+1}\} \subset V$ affinely independent. Then $\operatorname{int} (\operatorname{conv} A) \neq \emptyset$.
Proof:
Let $v_1 := x_2-x_1, \ldots, v_n :=x_{n+1} - x_1$. Then $\{x_1, \ldots, x_{n+1}\}$ is affinely independent if and only if $\{v_1, \ldots, v_n\}$ is linearly independent. We have $\operatorname{conv} A =x_1+ \operatorname{conv} \{0, v_1, \ldots, v_n\}$. So it suffices to show that $\operatorname{int} (B) \neq \emptyset$ with $B := \operatorname{conv} \{0, v_1, \ldots, v_n\}$. We have $V$ is topologically isomorphic to $\mathbb R^n$, so wlog we assume $V=\mathbb R^n$. All norms on $V$ is equivalent, so we consider the norm $[\cdot]$ on $V$ defined by $$ [\lambda_1 v_1 +\cdots+\lambda_n v_n] := |\lambda_1|+ \cdots+|\lambda_n|. $$
Let $a := \frac{1}{2n} v_1 +\cdots \frac{1}{2n} v_n \in B$ and $r:=\frac{1}{4n}$. For $x \in \mathbb B(a, r)$, we have $$ \begin{align} [x-a] =&\left [\lambda_1 v_1 +\cdots+\lambda_n v_n - \left (\frac{1}{2n} v_1 +\cdots \frac{1}{2n} v_n \right) \right] \\ =& \left | \lambda_1- \frac{1}{2n} \right | + \cdots + \left | \lambda_n- \frac{1}{2n} \right | \end{align} $$
Then $\left | \lambda_i - \frac{1}{2n} \right | <\frac{1}{4n}$ and thus $\lambda_i \in \left [\frac{1}{4n}, \frac{3}{4n} \right]$ for all $i=1, \ldots, n$. Then $0 \le \lambda_1 +\cdots + \lambda_n \le \frac{3}{4} < 1$. Then $$ x = \left (1-(\lambda_1 +\cdots+\lambda_n)\right ) . 0 + \lambda_1 v_1 +\cdots+\lambda_n v_n \in B. $$
It follows that $\mathbb B(a, r) \subset B$ and $a \in \operatorname{int} (B)$. This completes the proof.