Following the general answer here and the formulation here, we have the following.
Consider a function $\mathbf{F}:\mathbb{R}^n\to \mathbb{R}^m$ given by $\mathbf{F}(\mathbf{x})=(F_1(\mathbf{x}),...,F_m(\mathbf{x}))$, where $\mathbf{x}=(x_0,...,x_n)$.
The general $k$th-order Taylor expansion of $\mathbf{F}(\mathbf{x}+\mathbf{x}_0)$ about $\mathbf{x}_0$ is given by
$$
\mathbf{F}(\mathbf{x}+\mathbf{x}_0)\simeq T_{\mathbf{F},\mathbf{x}_0,k}(\mathbf{x}):=\sum_{j=0}^k\frac{(D^j\mathbf{F})_{\mathbf{x}_0}[(\mathbf{x})^j]}{j!}
$$
where the Frechet-derivative terms $(D^j\mathbf{F})_{\mathbf{x}_0}[(\mathbf{x})^j]$ may be written in the vector form as
$$
\begin{align}\label{eqfrechetd}
(D^j\mathbf{F})_{\mathbf{x}_0}[(\mathbf{x})^j]=
\begin{pmatrix}
\sum_{i_1,...,i_j=1}^n\frac{\partial^jF_1}{\partial x_{i_1}\cdots \partial x_{i_j}}(\mathbf{x}_0) (x_{i_1}\cdots x_{i_j})\\
\vdots\\
\sum_{i_1,...,i_j=1}^n\frac{\partial^jF_m}{\partial x_{i_1}\cdots \partial x_{i_j}}(\mathbf{x}_0) (x_{i_1}\cdots x_{i_j})
\end{pmatrix}
\end{align}
$$
where we used the notation
$$
\begin{align}
\sum_{i_1,...,i_j=1}^n&=\sum_{i_1=1}^n\cdots \sum_{i_j=1}^n
\end{align}
$$
In my case, $n=m=2$ and so the third term of the Taylor expansion is given by
$$
\frac16(D^3\mathbf{F})_{\mathbf{x}_0}[(\mathbf{x})^3]=
\frac16\begin{pmatrix}
\sum_{i_1,i_2,i_3=1}^2\frac{\partial^3F_1}{\partial x_{i_1}\partial x_{i_2}\partial x_{i_3}}(\mathbf{x}_0) x_{i_1}x_{i_2}x_{i_3}\\
\sum_{i_1,i_2,i_3=1}^2\frac{\partial^3F_2}{\partial x_{i_1}\partial x_{i_2}\partial x_{i_3}}(\mathbf{x}_0) x_{i_1}x_{i_2}x_{i_3}
\end{pmatrix}
$$