I'm trying to calculate this limit rigorously.
Let $a,v \in \ell_1$ with $a_i >0$ for all $i$ and $\|v\|_1 := \sum_i |v_i| = 1$. Let $$ D(t) := \frac{\|a+tv\|_1 - \|a\|}{t} = \sum_i \frac{|a_i+tv_i| - |a_i|}{t} $$ is for all $t>0$. Then $$ \lim_{t \to 0^+} D(t) = \sum_i v_i. $$
Could you have a check on my attempt? Is there any cleaner way to obtain the result?
My attempt: First, we consider the map $$ \varphi:(-1, 0) \cup (0, 1) \to \mathbb R, t \mapsto D(t). $$
By convexity of the norm $\| \cdot \|_1$, we get $\varphi$ is increasing. Hence $\lim_{t\to 0^+} D(t)$ is well-defined and finite. We have $$ \begin{align*} \lim_{t\to 0^+} D(t) &= \lim_{t\to 0^+} \sum_{i=1}^m \frac{|a_i+t v_i| - |a_i|}{t_n} + \lim_{t\to 0^+} \sum_{i>m} \frac{|a_i+t v_i| - |a_i|}{t_n} \\ &= \sum_{i=1}^m v_i + \underbrace{\lim_{t\to 0^+} \sum_{i>m} \frac{|a_i+t v_i| - |a_i|}{t_n}}_{H_m}. \end{align*} $$
We have $$ \begin{align*} |H_m| &= \lim_{t \to 0^+} \left | \sum_{i>m} \frac{|a_i+t v_i| - |a_i|}{t} \right | \le \lim_{t \to 0^+} \sum_{i>m} \frac{||a_i+t v_i| - |a_i||}{t} \le \lim_{t \to 0^+} \sum_{i>m} \frac{t|v_i|}{t} = \sum_{i>m} |v_i|. \end{align*} $$
We have $$ \lim_{t\to 0^+} D(t) = \lim_m \sum_{i=1}^m v_i + \lim_m H_m. $$
On the other hand, $$ |\lim_m H_m| = \lim_m |H_m| \le \lim_m \sum_{i>m} |v_i| = 0. $$
Hence $$ \lim_{t\to 0^+} D(t) = \sum_{i=1} v_i. $$