Based on one previous question: Why is the function $\|\mathbf{J}\|_{\infty}$ $1$-Lipschitz w.r.t to the Euclidean norm?.
For a real symmetric matrix $J$, let $\|J\|_{\infty}$ be the spectral radius of $J$. Why do we have $$ \|J\|_{\infty}=\sup_{\|v\|=1}\langle v, Jv\rangle ? $$ (Here I think that the sup is taken over $\|v\|_2=1$?)
I check the definition of the spectral radius of a matrix, which is $\rho(J):=\max_{1\le i\le n}|\lambda_i|=\|J\|_2$ with eigenvalues $\lambda_i$.
And the right hand side on the first display looks like the operator norm of the matrix $J$?
Here I get $$ \|J\|_2=\sup_{\|x\|_2=1}\|Jx\|_2=\sup_{\|x\|_2=1}\langle Jx, Jx\rangle=\sup_{\|x\|_2=1}\langle x, J^TJx\rangle $$ but this is not equal to $\sup_{\|x\|_2=1}\langle x, Jx\rangle$?