Given a measurable function $f$ on a measure space $(X,\mu)$ and $0<p,q\leq \infty$, define $$\|f\|_{L^{p,q}}=\left\{ \begin{array}{ll} \displaystyle{\left(\int_{0}^\infty\left(t^{1/p}f^*(t)\right)^q\,\frac{dt}{t}\right)^{1/q}}, & \mbox{si } q<\infty, \\ \sup_{t>0}t^{1/p}f^*(t), & \mbox{si } q=\infty. \end{array} \right.$$
Consider the functions $f(t)=t\quad$ and$\quad g(t)=1-t$ defined on $[0,1]$. My question is: How can I find $f^*$ and $g^*$? where \begin{align*} f^*: [0,\infty)&\longrightarrow [0,\infty)\\ t&\longmapsto f^*(t)=\inf\{s>0: d_f(s)\leq t\}\end{align*} and $$d_f(s)=\mu\left(\{x: |f(x)|>s\}\right),\ \ s>0$$ denotes the distribution function. The Loukas Grafakos-Classical Fourier Analysis book suggests that $f^*(\alpha)=g^*(\alpha)=(1-\alpha)\mathcal{X}_{[0,1]}(\alpha)$. Here $\mathcal{X}$ denotes the characteristic function.