Let $H$ be an infinite dimensional separable Hilbert space.
Bicommutant theorem : Let $\mathcal{S}$ be $*$-subset of $B(H)$, then $\mathcal{S}''$ is the strong closure $\overline{\langle \mathcal{S} \rangle}$ of the algebra $\langle \mathcal{S} \rangle$ generated by $\mathcal{S}$ (called the von Neumann algebra generated by $\mathcal{S}$).
Now if $\mathcal{S}$ is a non-selfadjoint subset of $B(H)$, what can we say about $\mathcal{S}''$ ?
Is it true that $\overline{\langle \mathcal{S} \rangle} \subset \mathcal{S}''$ ?
What are the simplest known subsets $\mathcal{S}$ with $\overline{\langle \mathcal{S} \rangle} \subsetneq \mathcal{S}''$ ? Single operator subsets ?
How generalize the bicommutant theorem ?