1

If $f(x)=\sqrt{1+\sqrt{x+\sqrt{x^2 +\sqrt{x^3 +\cdots}}}},$ then find the value of $f(4).$

My attempt: $f(x) = \sqrt{1+{\sqrt{x}} f(x)} \implies f(4) =\sqrt{1+2f(4)} \implies f(4)(f(4)-2)=1.$

I don't know how to proceed from here. The answer should be $2.$ Where am I getting wrong?

Kindly, explain it.Thank you for any guidance!

Debrogli
  • 384

1 Answers1

1

For $y>0$, \begin{eqnarray} 1+y & = & \sqrt{y^2+(2y+1)}\\ & = & \sqrt{y^2+\sqrt{(2y+1)^2}}\\ & = & \sqrt{y^2+\sqrt{4y^2+(4y+1)}}\\ & = & \sqrt{y^2+\sqrt{4y^2+\sqrt{(4y+1)^2}}}\\ & = & \sqrt{y^2+\sqrt{4y^2+\sqrt{16y^2+(8y+1)}}}\\ & \vdots & \\ & = & \sqrt{y^2+\sqrt{4y^2+\sqrt{4^2y^2+\sqrt{4^3y^2+\sqrt{4^4y^2+\cdots}}}}} \end{eqnarray}

If you set $y=1$ you get the value of your function for the special case $x=4$, i.e. $f(4)=1+1=2$.

Greg Martin
  • 92,241
Peder
  • 2,232
  • Note that the relations only hold for $y>0$ as the left hand is 1 for $y=0$ while the limit appears to be 0. – Peder May 18 '22 at 04:12