Question
Draw an inscribed triangle on a circle and divide the circle into four parts $A, B, C, D$.
Can the areas of these parts be integers?
My attempt
Find the area of the arc from the central angle $(\alpha, \beta, \theta)$
$$ \begin{aligned} S &= π r^2\\ A &= \frac{r^2}{2}(\alpha-\sin\alpha)\\ B &= \frac{r^2}{2}(\beta-\sin\beta)\\ C &= \frac{r^2}{2}(\gamma-\sin\gamma)\\ \end{aligned} $$
with constraints
$$ \begin{aligned} S &= A+B+C+D\\ 2π &= \alpha + \beta + \gamma\\ \end{aligned} $$
which can expand to
$$ π r^2 = \frac{r^2}{2}(\alpha-\sin\alpha) + \frac{r^2}{2}(\beta-\sin\beta)+\frac{r^2}{2}(2π - \alpha - \beta-\sin(2π - \alpha - \beta))+D $$
and then simplify as
$$ D=\frac{r^2}{2}(4 \pi -2 (\alpha +\beta )+\sin (\alpha +\beta )+\sin (\alpha )+\sin (\beta )) $$
so, for $\pi>\beta \geqslant \alpha > 0$, $r\in\mathbb{R}_+$ have relation
$$ \begin{aligned} A &= \frac{r^2}{2}(\alpha-\sin\alpha)\\ B &= \frac{r^2}{2}(\beta-\sin\beta)\\ C &= \frac{r^2}{2}(2 \pi - (\alpha +\beta )+\sin(\alpha +\beta)\\ D &=\frac{r^2}{2}(4 \pi -2 (\alpha +\beta )+\sin (\alpha +\beta )+\sin (\alpha )+\sin (\beta ))\\ \end{aligned} $$
Looks like both have the form $p\pi - q$, if 4-parts are all rational numbers after removing this common factor, then you can adjust $r$ to make the four parts are integers.
I don't know how to find a integer solution or explain no solution.
