Let $\mathcal{F_{ab}}$ be the fundamental matrix obtained from images $A$ and $B$
$$ \mathcal{F_{ab}} = \begin{bmatrix} ab_{11} & ab_{12} & ab_{13} \\ ab_{21} & ab_{22} & ab_{23} \\ ab_{31} & ab_{32} & ab_{33} \\ \end{bmatrix} $$
and let $\mathcal{F_{bc}}$ be the fundamental matrix obtained from image $B$ and $C$
$$ \mathcal{F_{bc}} = \begin{bmatrix} bc_{11} & bc_{12} & bc_{13} \\ bc_{21} & bc_{22} & bc_{23} \\ bc_{31} & bc_{32} & bc_{33} \\ \end{bmatrix} $$
and let $\mathcal{F_{ac}}$ be the fundamental matrix obtained from images $A$ and $C$
$$ \mathcal{F_{ac}} = \begin{bmatrix} ac_{11} & ac_{12} & ac_{13} \\ ac_{21} & ac_{22} & ac_{23} \\ ac_{31} & ac_{32} & ac_{33} \\ \end{bmatrix} $$
Is it possible to get $\mathcal{F_{ac}}$ as a function of $\mathcal{F_{ab}}$ and $\mathcal{F_{bc}}$?
NOTES :
- $A,B \text{ and } C$ are images.
- $ab, bc \space and \space ca$ are just component variable of Fundamental Matrices [Video for Explanation] gained from the images. $ab$ is not product of $a$ and $b$, it's just variable name.
- The numeric subscripts $(_{ij})$ are used for indicating positions.
- Image is a matrix whose size is like [height, width] and Fundamental Matrix is gained from two images.
- The Fundamental Matrix can be generated from Image Matrix using OpenCV. The Source Code of Function
cvFindFundamentalMatis here.