Consider the joint density $f(x,y)=c(x−y)e^{−x}, 0 \le y \le x$.
a) Determine the value of c.
b) Calculate the marginal of Y.
c) Calculate the expectation E(Y).
a)$1=\int_0^x c(x−y)e^{−x} = \frac{cx^2e^{-x}}{2} = 1 \to c = \frac{2e^x}{x^2}, x \ne 0 $
b)$F_Y(Y) = \int_{-\infty}^{\infty} f(x,y)dx =\int_y^x\frac{\frac{2e^x}{x^2}(x^2-y)e^{-x}}{2}d_x = \frac{x^2 + y}{x}- y - 1$
c)$E[Y] = \int_{-\infty}^{\infty}yc(x−y)e^{−x}dy =\int_0^xy\frac{2e^x}{x^2}(x−y)e^{−x}dy =\frac{x}{3}$
This is what I managed to do, but I don't know if it's right, it's looking kind of weird, am I by the monos on the right track?
Thanks for any help.