This is the statement:
Let $f \colon [a,b] \to \mathbb{R}$ be continuous, g monotonous and positive such that $g'$ is continious on [a,b]. Prove that there exists a $\xi \in [a,b]$ s.t:
$\int_{a}^b f(x)g(x) dx = g(a)\int_a^{\xi}f(x)dx + g(b) \int_{\xi}^b f(x)dx$
So far I've done this:
Let $\int_{a}^b f(x)g(x) dx = \int_{a}^{\xi} f(x)g(x) dx + \int_{\xi}^b f(x)g(x) dx $ for $\xi \in [a,b]$. From FTC:
$$\int_{a}^x g'(t) = g(x) - g(a)$$
and
$$\int_{x}^b g'(x) = g(b)-g(x)$$
So the previous equation becomes:
$$\int_{a}^{\xi} f(x)\int_{a}^{x}g'(x) dx + g(a)\int_{a}^{\xi} f(x) dx + g(b)\int_{\xi}^b f(x) dx -\int_{\xi}^b f(x) dx\int_{x}^b g'(x) dx$$
Is there a way to prove $\int_{a}^{\xi} f(x)\int_{a}^{x}g'(x) dx-\int_{\xi}^b f(x) dx\int_{x}^b g'(x) dx = 0$?
Thanks!