Functions $f(x)=\lfloor x\rfloor$ and $g(s)=\frac{\zeta (s)}{s}$ are related by Mellin inversion theorem, for $c>1$, $\Re(s)>1$.
$$\mathcal{M}_x(f(x))(s)=\mathcal{M}_s^{-1}(g(s))(x)$$
$$\tag{1.1}f(x)=\lfloor x\rfloor =\frac{1}{2 \pi i} \int_{c-i \infty }^{c+i \infty } \frac{\zeta (s)}{s} x^s \, ds$$
$$\tag{1.2}g(s)=\frac{\zeta (s)}{s}=\int_0^{\infty } \lfloor x\rfloor x^{-s-1} \, dx$$
Functions $f(x)=x-\lfloor x\rfloor$ and $g(s)=\frac{-\zeta (s)}{s}$ are related by Mellin inversion theorem, for $0<c<1$, $0<\Re(s)<1$. $$\mathcal{M}_x(f(x))(s)=\mathcal{M}_s^{-1}(g(s))(x)$$
$$\tag{2.1}f(x)=x-\lfloor x\rfloor =\frac{1}{2 \pi i} \int_{c-i \infty }^{c+i \infty } \frac{-\zeta (s)}{s} x^s \, ds$$
$$\tag{2.2}g(s)=\frac{-\zeta (s)}{s}=\int_0^{\infty } (x-\lfloor x\rfloor) x^{-s-1} \, dx$$
Relations in $(1.1)$ and $(1.2)$ can be derived using Abel's summation formula, as is described on that Wikipedia page.
How relations $(2.1)$ and $(2.2)$ can be derived?
It is interesting that $(1.1)$ and $(1.2)$ are valid for $\Re(s)>1$ while $(2.1)$ and $(2.2)$ for $0<\Re(s)<1$.
Are there any other similar formulas that involve $\lfloor x\rfloor$, $\zeta (s)$ and Mellin inversion theorem that are valid at least in some portion of $\Re(s)<0$.