1

Is a projective module $P$ over a ring $R$ which is a finite direct product of fields free?

1 Answers1

3

No. For example, $K\times\{0\}$ is a projective module over the ring $K\times L$ (being a direct summand of the free module $K\times L\cong (K\times \{0\})\oplus (\{0\}\times L)$). But it is not free.

More generally, over $K\times L$, any module of the form $K^n\times L^m$, with $n,m\in\mathbb{N}$, is projective. Such a module is free if and only if $n=m$.

Alex Kruckman
  • 86,811