I tried this:
$\lim\limits_{n\rightarrow \infty }(n-\sum^n_{k=1}\cos\frac{2k}{n\sqrt{n}}) $=
= $ \lim\limits_{n\rightarrow \infty }(1-\cos\frac{2}{n\sqrt{n}}) $ + $ \lim\limits_{n\rightarrow \infty }(1-\cos\frac{4}{n\sqrt{n}}) $ + ... + $ \lim\limits_{n\rightarrow \infty }(1-\cos\frac{2n}{n\sqrt{n}}) $ =
= $ \lim\limits_{n\rightarrow \infty }\frac{(1-\cos\frac{2}{n\sqrt{n}})(1+\cos\frac{2}{n\sqrt{n}})}{1+\cos\frac{2}{n\sqrt{n}}} $ + $ \lim\limits_{n\rightarrow \infty }\frac{(1-\cos\frac{4}{n\sqrt{n}})(1+\cos\frac{4}{n\sqrt{n}})}{1+\cos\frac{4}{n\sqrt{n}}} $ + ...+ $ \lim\limits_{n\rightarrow \infty }\frac{(1-\cos\frac{2n}{n\sqrt{n}})(1+\cos\frac{2n}{n\sqrt{n}})}{1+\cos\frac{2n}{n\sqrt{n}}} $ =
= $ \lim\limits_{n\rightarrow \infty }\frac{\sin^2\frac{2}{n\sqrt{n}}}{1+\cos\frac{2}{n\sqrt{n}}} $ + $ \lim\limits_{n\rightarrow \infty }\frac{\sin^2\frac{4}{n\sqrt{n}}}{1+\cos\frac{4}{n\sqrt{n}}} $ + ... + $ \lim\limits_{n\rightarrow \infty }\frac{\sin^2\frac{2n}{n\sqrt{n}}}{1+\cos\frac{2n}{n\sqrt{n}}} $ = ...
, but from here I don't know what to do.