For each $n\in\mathbb{N}$ and $i=0,\dots, n$ let $U_i^n\subset \mathbb{R}P^n$ be the open subset $U_i^n = \{[p_0,\dots,p_n], p_i\neq 0\}$, and $\phi_i^n: U_i^n \rightarrow \mathbb{R}^n$ be given by $\phi_i^n([p_0,\dots,p_n]) = (\frac{p_0}{p_i}, \dots, \frac{p_{i-1}}{p_i}, \frac{p_{i+1}}{p_i},\dots,\frac{p_n}{p_i})$. Then $\mathcal{A}^n=\{(U_i^n,\phi_i^n)\}_{i=0}^n$ is a smooth atlas on $\mathbb{R}P^n$ for each $n\in\mathbb{N}$. Let us set $\phi_i^n = (x_i^1,\dots,x_i^n)$
First, notice that $f([p_0, \dots, p_n]) = f([q_0, \dots, q_n]) \implies(q_0, \dots, q_n,0)=\lambda (p_0, \dots, p_n,0), \lambda\in\mathbb{R}$, and thus $(q_0, \dots, q_n)=\lambda (p_0, \dots, p_n) \implies [p_0, \dots, p_n] = [q_0, \dots, q_n]$. So that $f$ is one-one.
To prove that $f(\mathbb{R}P^n)\subset \mathbb{R}P^{n+1}$ is a submanifold, we just use the first $n+1$ charts of $\mathcal{A}^{n+1}$. Indeed, for any $(p_0,\dots, p_n)\in\mathbb{R}^{n+1}\setminus\{0\}$, there is an $i< n+1$ for which $p_i\neq 0$. Then $U_i^{n+1}$ is an open neighborhood of $f([p_0, \dots, p_n])$. Moreover, the last coordinate of $\phi_i^{n+1}([r_0,\dots,r_{n+1}])$ vanishes if and only if $r_{n+1} = 0$. Thus, $U_i^{n+1}\cap f(\mathbb{R}P^n) = \{[p_0,\dots,p_n,0], p_i\neq 0\} = \{r\in U_i^{n+1}, x_i^{n+1}(r)=0\}$, and $f(\mathbb{R}P^n)$ is an $n$-dimensional submanifold of $\mathbb{R}P^{n+1}$.
These charts are what are called adapted charts for the submanifold $f(\mathbb{R}P^n)$, and we will use them to prove the smoothness of both $f$ and $f^{-1}$.
Notice that smoothness is a local condition, so it will be enough to prove the smoothness of any map when restricted to open neighborhoods.
Take any point $p=[p_0, \dots, p_n]\in \mathbb{R}P^n$ and choose $i < n+1$ with $p_i\neq 0$. Then $(U_i^n,\phi_i^n)$ is chart in $\mathbb{R}P^n$ around $p$ and $(V,\psi)$ is a chart in $\mathbb{R}P^{n+1}$ around $f(p)$, where $V =U_i^{n+1}\cap f(\mathbb{R}P^n)$, $\psi =\pi\circ\phi_i^{n+1}|_{f(\mathbb{R}P^n)}$, $\pi$ being the projection onto the first $n$ coordinates. Next, we just compute the local expression of $f$ relative to these charts:
$
\begin{align}
\psi\circ f\circ(\phi_i^n)^{-1}(x^1,\dots,x^n) &= \psi\circ f ([x^1,\dots,x^{i-1},1,x^i,\dots, x^n])
\\
&= \psi([x^1,\dots,x^{i-1},1,x^i,\dots, x^n,0])\\
&= (x^1,\dots, x^n).
\end{align}
$
From this, not only do we get the smoothness of $f$, but also that of $f^{-1}$, since both are locally the identity map $\mathbb{1}_{\phi_i^n(U_i^n)}$. So, $f$ is an embedding.