Lemma 1: Assume $D$ is countable and dense in $X$. Then
$$
\mathcal D := \{a_1 \delta_{x_1} + \cdots + a_n \delta_{x_n} \mid n \in \mathbb N_{>0} \text{ and } x_1, \ldots, x_n \in D \text{ and } a_1, \ldots, a_n \in \mathbb Q_{\ge 0} \text{ and } a_1 + \cdots + a_n=1\}
$$
is countable and dense in $\mathcal P$.
Lemma 2: Suppose $X$ has a countable dense subset $A$ such that every Cauchy sequence in $A$ converges to a point in $X$. Then $X$ is complete.
Lemma 3: Let $X$ be complete and $\Gamma \subset \mathcal{P}$. If
$$
\forall \varepsilon, \delta>0, \exists a_{1}, \ldots, a_{n} \in X, \forall \mu \in \Gamma: \mu\left(\bigcup_{i=1}^{n} B\left(a_{i}, \delta\right)\right) \geq 1-\varepsilon,
$$
then $\Gamma$ is uniformly tight.
Let $D$ be a countable dense subset of $X$. By Lemma 1, let $\mathcal D$ be a countable dense subset of $\mathcal P$ that is induced by $D$. Let $(\mu_n)$ with $\mu_n := a_{n,1} \delta_{x_{n,1}} + \cdots + a_{n, \lambda(n)} \delta_{x_{n, \lambda(n)}}$ be a Cauchy sequence in $\mathcal D$. By Lemma 2, it suffices to show that there is $\mu \in \mathcal P$ such that $\mu_n \to \mu$ in $d_P$. By Prokhorov theorem, it suffices to show that $(\mu_n)$ is uniformly tight. As such, we will prove that $(\mu_n)$ satisfies the condition of Lemma 3.
Fix $\varepsilon, \delta>0$. Let's $\varepsilon' := \frac{1}{2} \min\{\varepsilon, \delta\}$. There is $N$ such that $d_P(\mu_n, \mu_N) < \varepsilon'$ for all $n \ge N$, i.e.,
$$
\begin{cases}
\mu_N(A) \leq \mu_n \left(A_{\varepsilon'}\right)+\varepsilon' \\
\mu_n(A) \leq \mu_N \left(A_{\varepsilon'}\right)+\varepsilon'
\end{cases}
\quad \forall n \ge N, A \in \mathcal B(X).
$$
Let
$$
A := \bigcup_{i=1}^{\lambda(N)} B (a_{N,i}, \varepsilon' ).
$$
It follows that $\mu_n \left(A_{\varepsilon'}\right) \ge 1-\varepsilon'$ for all $n \ge N$. Notice that
$$
A_{\varepsilon'} = \{x\in X \mid d(x, A) < \varepsilon'\} \subset \bigcup_{i=1}^{\lambda(N)} B (a_{N,i}, 2\varepsilon' ) \subset \bigcup_{i=1}^{\lambda(N)} B (a_{N,i}, \delta).
$$
It follows that
$$
\mu_n \left( \bigcup_{i=1}^{\lambda(N)} B (a_{N,i}, \delta) \right ) \ge \mu_n(A_{\varepsilon'}) \ge 1- \varepsilon' \ge 1-\varepsilon \quad \forall n \ge N.
$$
It follows that the collection of centers $\{a_{n,i} \mid n \le N, i\le \lambda(n)\}$ satisfies the condition.