Fix $\mu, \nu, \lambda \in \mathcal P(X)$. Let
$$
\mathcal A := \left\{ \alpha + \beta \,\middle\vert\, \alpha,\beta>0 \text{ such that }
\begin{align*}
\mu(A) \leq \nu\left(A_{\alpha}\right)+\alpha \\
\nu(A) \leq \mu \left(A_{\alpha}\right)+\alpha \\
\nu(A) \leq \lambda\left(A_{\beta}\right)+\beta \\
\lambda(A) \leq \nu \left(A_{\beta}\right)+\beta
\end{align*}
\quad \forall A \in \mathcal{B}(X)
\right\}.
$$
and
$$
\mathcal A' := \left\{ \alpha>0 \,\middle\vert\,
\begin{align*}
\mu(A) \leq \lambda\left(A_{\alpha}\right)+\alpha \\
\lambda(A) \leq \mu \left(A_{\alpha}\right)+\alpha
\end{align*}
\quad \forall A \in \mathcal{B}(X)
\right\}.
$$
We have $\inf O_1+\inf O_2 \ge \inf (O_1+O_2)$ for all $O_1, O_2 \subseteq \mathbb R$, so $d_{P}(\mu, \nu) + d_{P}(\nu, \lambda) \ge \inf \mathcal A$. It remains to prove that $\inf \mathcal A \ge \inf \mathcal A'$. Again, it suffices to prove that $\mathcal A \subseteq \mathcal A'$.
Let $\alpha,\beta>0$. Fix $x \in (A_\alpha)_{\beta}$. We have $d(x,y') \le d(x,y)+d(y,y')$ for all $y\in A_\alpha$ and $y' \in A$. Then for all $y \in \mathcal A_\alpha$,
\begin{align}
\inf_{y' \in A}d(x,y') &\le d(x,y) + \inf_{y'\in A} d(y, y') \\
&= d(x,y) +d(y,A) \\
&\le d(x,y)+\alpha
\end{align}
Then
\begin{align}
\inf_{y' \in A}d(x,y') &\le\inf_{y \in \mathcal A_\alpha} d(x,y) + \alpha \\
&= d(x, \mathcal A_\alpha)+\alpha \\
&\le \beta+\alpha
\end{align}
Hence $x \in A_{\alpha+\beta}$ and thus $(A_\alpha)_{\beta} \subseteq A_{\alpha+\beta}$.
Assume $\alpha+\beta \in \mathcal A$. Then $\mu(A) \leq \nu\left(A_{\alpha}\right)+\alpha$ and $\nu(A_\alpha) \leq \lambda\left((A_\alpha)_{\beta}\right)+\beta \le \lambda(A_{\alpha+\beta})+\beta$ for all $A \in \mathcal B(X)$. It follows that $\mu(A) \le \lambda(A_{\alpha+\beta})+\alpha+\beta$ for all $A \in \mathcal B(X)$. Similarly, we have $\lambda(A) \le \mu(A_{\alpha+\beta})+\alpha+\beta$ for all $A \in \mathcal B(X)$. Hence $\alpha+\beta \in \mathcal A'$. This completes the proof.