As the title says: I'm wondering, out of curiosity, whether any (weak) Egyptian fraction decomposition of 2 always splits into two Egyptian fraction decompositions of 1. By a "weak" Egyptian fraction decomposition, I mean one where the denominators are not necessarily required to be distinct. (The problem with normal Egyptian fraction decompositions, where $a_n$ are required to be distinct, would also be interesting.)
In trying to construct a counterexample -- for example by taking enough prime numbers so that $\sum_{k=1}^n \frac{1}{p_k} > 2$, removing the last one, and inserting enough remainder terms to make up the difference -- I run into a tension between having the denominators grow slowly enough for the sum to diverge, and on the other hand having the sum be close enough to 2 that the remainders can't bring the sums otherwise close to 1. I haven't yet found a way for such an approach to work.
From the other end, I've written a simple Python script to try to search for decompositions of 2, and see for each whether it's splittable into 2 decompositions of 1. At the current stage, I've been able to run it for lengths up to 7 and haven't found any counterexamples. But when I try to allow length of 8, the run time (as the script stands) appears to be prohibitive; and if I trace through the decompositions of length 7 or less that it's testing, it appears that length 7 is not yet enough to get any really interesting decompositions.