I am looking for symptotic formula for $\sum_{n<x} \frac {d(n)}{\sqrt{n}}$ which doesn't use $\zeta(\frac{1}{2})$
My guess is - perhaps it is something like $A\sqrt{x}\log{x} + B \sqrt{x} + O(\log{x})$ where $A, B$ are some constants, based on these formulas:
$$\sum_{n<x} \frac {d(n)}{n} = \frac{1}{2}(\log{x})^2 + 2\gamma\log{x} + O(1)$$ $$\sum_{n<x} {d(n)} = x\log{x} + (2\gamma-1)x + O(\sqrt{x})$$
Per Huxley the error term can be improved to $$\sum_{n<x} {d(n)} = x\log{x} + (2\gamma-1)x + O(x^\theta)$$ with $ \inf \theta \le 131/416 = 0.31490384615 $
Similar questions: