This answer is intended to prove the result that
$$
\limsup_{n\to\infty}{\log d(n)\log\log n\over\log n}=\log2.\tag1
$$
Let $n_k$ be the product of first $k$ primes, so that $d(n_k)=2^k$. By Chebyshev's inequality (i.e. the weak prime number theorem), we know there exists $c>0$ such that for large $k$,
$$
\log n_k=\vartheta(p_k)=\sum_{p\le p_k}\log p>cp_k.
$$
This indicates that
$$
\log\log n_k>(1+o(1))\log p_k.
$$
Moreover, since $\vartheta(p_k)\le\pi(p_k)\log p_k=k\log p_k$, we have
$$
{\log d(n_k)\over\log2}=k={k\log p_k\over\log p_k}>(1+o(1)){\log n_k\over\log\log n_k}.
$$
This inequality indicates that
$$
\limsup_{n\to\infty}{\log d(n)\log\log n\over\log n}\ge\log2.
$$
To turn this one-sided result into an equality, we need to obtain a general upper bound for $d(n)$:
Suppose $n=\prod_{p|n}p^{\alpha_p}$. Then by definition, we can choose $2\le t\le n$ so that
\begin{align}
d(n)
&=\prod_{p|n}(1+\alpha_p)=\prod_{\substack{p|n\\p\le t}}(1+\alpha_p)\prod_{\substack{p|n\\p>t}}(1+\alpha_p)
\end{align}
For all $p|n$, we know for certain that $\alpha_p\le\log n/\log2$ with equality iff $p=2$. As a result, we have
$$
\prod_{\substack{p|n\\p\le t}}(1+\alpha_p)\le\left(1+{\log n\over\log2}\right)^t
$$
When product over $p|n\wedge p>t$, we have
\begin{aligned}
\prod_{\substack{p|n\\p>t}}(1+\alpha_p)
&\le\prod_{\substack{p|n\\p>t}}2^{\alpha_p}=\prod_{\substack{p|n\\p>t}}p^{\alpha_p\log2/\log p} \\
&<\left(\prod_{p|n}p^{\alpha_p}\right)^{\log2/\log t}=\exp\left(\log2{\log n\over\log t}\right)
\end{aligned}
Putting them all together gives
$$
\log d(n)<t\log\left(1+{\log n\over\log2}\right)+\log2{\log n\over\log t}<\log2{\log n\over\log t}+O(t\log\log n)
$$
To continue, set $t=e^{-u}\log n$ so that
$$
\log d(n)<\log2{\log n\over\log\log n-u}+O(e^{-u}\log n\log\log n)
$$
To continue, set $u=3\log\log\log n$, so we conclude that
$$
{\log d(n)\over\log2}<{\log n\over\log\log n}\left\{1+O\left(\log\log\log n\over\log\log n\right)\right\}
$$
Combining this with the aforementioned inequality, we finish the proof for (1).