$\newcommand{\d}{\mathrm{d}}$EDIT: In the nontrivial example $f(x)=x-\frac{1}{4}x^3$ and using either of the two series to produce a result for $f^{-1}(3/4)$, I find that $(\ast)$ and $(1)$ produce the same result. It would appear that they actually are, by some unseen machinery, equivalent. Why?
Op:
A collection of past "Step" exam questions includes a question based on the following assertion:
If $y=f(x)$, the inverse of $f$ is given by Lagrange's identity: $$\tag{$\ast$}f^{-1}(y)=y+\sum_{n=1}^\infty\frac{1}{n!}\frac{\d^{n-1}}{\d y^{n-1}}[y-f(y)]^n$$
Of course this is not very formally phrased, since the targeted syllabus is pre-university, but let's infer that $f$ is to be a real analytic injection and $y$ in its image (that being said, it still feels as if far too many $y$s are floating around - is $y$ fixed? Where did $x$ go?)
With that, I am still suspicious of this identity. The Lagrange Inversion Theorem as I know it has two forms:
Suppose $f:\Bbb C\to\Bbb C$ is analytic at a point $a$ and $f'(a)\neq0$; then there is a neighbourhood $V\subseteq\Bbb C$ of $f(a)$ in which the function $g:V\to\Bbb C$ defined by: $$\tag{1}z\mapsto a+\sum_{n=1}^\infty\frac{1}{n!}(z-f(a))^n\cdot\lim_{w\to a}\frac{\d^{n-1}}{\d w^{n-1}}\left[\left(\frac{w-a}{f(w)-f(a)}\right)^n\right]$$Is a local analytic inverse of $f$ - $f(z)=w\iff z=g(w)$ if $w\in V,z\in f^{-1}(V)$.
There is also a cute combinatorial version, Lagrange-Burmann:
Suppose $f:\Bbb C\to\Bbb C$ satisfies $f(w)=w/\phi(w)$ for some analytic $\phi:\Bbb C\to\Bbb C$ with $\phi(0)\neq 0$. There is a similarly defined as above inverse to $f$, $g$, with coefficient formula: $$\tag{2}[w^n]g(w)=\frac{1}{n}[z^{n-1}]\phi(w)^n$$
Let's note that $(\ast)$ is broadly similar but technically different to both $(1)$ and $(2)$. My question is: I know for a fact $(1),(2)$ are equivalent and correct after many hours of painful research, but $(\ast)$ I have never seen before - how is it equivalent to $(1)$?
We note that if they are equivalent, this would imply (I think, anyway - the excessive usage of $y$s is baffling):
$$(y-f(x))^n\cdot\lim_{a\to x}\frac{\d^{n-1}}{\d a^{n-1}}\left[\left(\frac{a-x}{f(a)-f(x)}\right)^n\right]\equiv\frac{\d^{n-1}}{\d y^{n-1}}[y-f(y)]^n$$
But this seems ridiculous, especially since no fixed point $x$ is defined, on the right hand side. Moreover a direct equation of coefficients reveals that the centrepoint $x$ should be taken as $y$, which again seems nonsensical.
Is the examiner abusing notation, am I making some mistake, or is $(\ast)$ nonsense as my gut feeling suggests? I surely hope it is not the latter.
