Let $A_n$ be the following matrix for $p\leq 1$: \begin{equation} A_n = \begin{bmatrix} 1 & 2^{-p} & 3^{-p} & \dots & n^{-p} \\ 2^{-p} & 1 & 2^{-p} & \dots & (n-1)^{-p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n^{-p} & (n-1)^{-p} & (n-2)^{-p} & \dots & 1. \end{bmatrix} \end{equation}
How do I show whether this matrix is positive definite or not? Numerically, it seems to be positive definite. I've tried to show this by showing the Cholesky decomposition exists, but the expressions I get are confusing.