3

What is the maximum number of elements of the inverse of an $n\times n$ matrix consisting of natural numbers $(\geq1)$ that are identical to itself?

This question arose from my previous question, How many elements in the inverse of an $n\times n$ positive matrix can be positive? . There is an upper bound $n^2-n$ because at least $n$ elements must be negative, as I wrote in that question. Also, I found a series of matrices such that $n^2-2n+2$ as shown below. I think it can be shown by the product of the matrix and its inverse being the identity matrix. So, the maximum should be between $n^2-2n+2$ and $n^2-n$.

$n=2$ $$\begin{pmatrix}2&3\\1&2\end{pmatrix}^{-1}=\begin{pmatrix}\color{red}2&-3\\-1&\color{red}2\end{pmatrix}$$ $n=3$ $$\begin{pmatrix}3&4&4\\1&2&1\\1&1&2\end{pmatrix}^{-1}=\begin{pmatrix}\color{red}3&-4&-4\\-1&\color{red}2&\color{red}1\\-1&\color{red}1&\color{red}2\end{pmatrix}$$ $n=4$ $$\begin{pmatrix}4&5&5&5\\1&2&1&1\\1&1&2&1\\1&1&1&2\end{pmatrix}^{-1}=\begin{pmatrix}\color{red}4&-5&-5&-5\\-1&\color{red}2&\color{red}1&\color{red}1\\-1&\color{red}1&\color{red}2&\color{red}1\\-1&\color{red}1&\color{red}1&\color{red}2\end{pmatrix}$$ $n=5$ $$\begin{pmatrix}5&6&6&6&6\\1&2&1&1&1\\1&1&2&1&1\\1&1&1&2&1\\1&1&1&1&2\end{pmatrix}^{-1}=\begin{pmatrix}\color{red}5&-6&-6&-6&-6\\-1&\color{red}2&\color{red}1&\color{red}1&\color{red}1\\-1&\color{red}1&\color{red}2&\color{red}1&\color{red}1\\-1&\color{red}1&\color{red}1&\color{red}2&\color{red}1\\-1&\color{red}1&\color{red}1&\color{red}1&\color{red}2\end{pmatrix}$$

Edit: I changed the direction of the 2 in the above matrices. And here is the proof of this. $$\left(\begin{array}{c|ccc}n&&\mathbf{(n+1)}_{n-1}&\\\hline&&&\\\mathbf{1}_{n-1}&&J_{n-1}+I_{n-1}&\\&&&\end{array}\right)\left(\begin{array}{c|ccc}n&&\mathbf{(-n-1)}_{n-1}&\\\hline&&&\\\mathbf{-1}_{n-1}&&J_{n-1}+I_{n-1}\\&&&\end{array}\right)=\left(\begin{array}{c|ccc}n^2+(\mathbf{n+1})\cdot(-\mathbf{1})&&n(\mathbf{-n-1})+(\mathbf{n+1})J+(\mathbf{n+1})&\\\hline&&&\\n\mathbf{1}+(J+I)(\mathbf{-1})&&1(\mathbf{-n-1})+J^2+JI+IJ+I&\\&&&\end{array}\right)\\=\left(\begin{array}{c|ccc}n^2-(n+1)\cdot(n-1)&&\left((-n^2-n)+(n+1)(n-1)+(n+1)\right)\mathbf{1}&\\\hline&&&\\\left(n-(n-1)-1\right)\mathbf{1}&&(-n-1)J+(n-1)J+2J+I&\\&&&\end{array}\right)\\=\left(\begin{array}{c|ccc}1&&\mathbf{0}&\\\hline&&&\\\mathbf{0}&&I&\\&&&\end{array}\right)=I$$

where $J$ is a unit matrix, consisting of all 1s.

dodicta
  • 1,451
  • 2
    (+1) , in particular for the family of matrices which are good candidates for the optimum. First step should be to prove that this pattern continues forever. This is probably easier than to determine the actual optimum. – Peter Mar 01 '22 at 09:52
  • 1
    Note that $A-A^{-1}$ has lots of $0$ entries; in these examples, the rank of $A-A^{-1}$ is only $2$; since $A$ is invertible, that's also the rank of $A^2-I$; so $A$ has the eigenvalue $1$ with multiplicity $n-2$. Maybe pointing this out helps with other examples or proofs, I don't know. – Greg Martin Mar 04 '22 at 07:41

0 Answers0