0

I have to prove the following: $\varphi(n)=n\prod\limits_{p\mid n}(1-\frac{1}{p})$.

To prove this I have to use the following theorem: Let n,r,a$_{1}$,...,a$_{r}$ are pairwise coprime, the number of natural numbers < n divisible by none of a$_{i}$ is equal to

n-$\sum\limits_{i=1}^{r}\lfloor\frac{n}{a_{i}}\rfloor$+$\sum\limits_{1\leq i<j\leq r}\lfloor \frac{n}{a_{i}a_{j}}\rfloor\pm\cdot\cdot\cdot+(-1)^{r}\lfloor\frac{n}{a_{1},...,a_{r}}\rfloor$.

I choose a$_{1}$,...,a$_{r}$ as the enumeration of prime divisors of n. Then for i$\neq$j is $\lfloor\frac{n}{a_{i}a_{j}}\rfloor = \frac{n}{a_{i}a_{j}}$.

Then I think I have to rearrange this

n-$\sum\limits_{i=1}^{r}\lfloor\frac{n}{a_{i}}\rfloor$+$\sum\limits_{1\leq i<j\leq r}\lfloor \frac{n}{a_{i}a_{j}}\rfloor\pm\cdot\cdot\cdot+(-1)^{r}\lfloor\frac{n}{a_{1},...,a_{r}}\rfloor$ to this n$\prod\limits_{p\mid n}(1-\frac{1}{p})$, but I can't.

Can you help me rearrange this?

Thanks in advance

Melila
  • 45

0 Answers0