Let's ${\bf x}=(x_1,x_2,\ldots,x_n)^T$ and ${\bf m}$ a symmetric $n\times n$ matrix with orthogonal eigenvectors ${\bf q_i}$ and corresponding eigenvalues $\lambda_i$. Then the quadratic form of ${\bf x}$ can be expressed by projections on an orthogonal space.
$${\bf x}^T{\bf m}{\bf x}=\sum_{i=1}^n \lambda_i \Vert {\bf q_i}^T{\bf x}\Vert^2\tag{1}$$
Simple example: $${x_1} {x_2}-{x_2} {x_3} =\left(x_1,x_2,x_3\right)\begin{pmatrix}0&\frac{1}{2}&0\\\frac{1}{2}&0&-\frac{1}{2}\\0&-\frac{1}{2}&0\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\\= \frac{1}{\sqrt{2}}\left(-\frac{{x_1}}{2}-\frac{{x_2}}{\sqrt{2}}+\frac{{x_3}}{2}\right)^2-\frac{1}{\sqrt{2}}\left(-\frac{{x_1}}{2}+\frac{{x_2}}{\sqrt{2}}+\frac{{x_3}}{2}\right)^2\tag{2}$$ The two summands on the rhs of eq.$(2)$ result from projections on an orthogonal space.
Now I am looking for an analogous orthogonal decomposition for quartic forms with degree $4$, e.g.:
$${x_1} {x_2}x_3x_4-{x_2} {x_3}x_5x_5=\sum_{i=1}^k d_i\left(\sum_{j=1}^5c_{ij}x_j\right)^4\tag{3}$$
where $d_i,c_{ij}$ are constants to be determined. The $k$ summands on the rhs of eq.$(3)$ shall have the property that they result from projection on an orthogonal space similar as in eq.$(1)$. However, I have no idea if such concept exists beyond degree $2$ and if tensor calculus could help.