Let $G$ be a group, $H$, a normal subgroup of $G$, prove that the commutator subgroup $H'$ of $H$ is a normal subgroup in $G$.
My ideas:
I want to prove it like this: $gH'g^{-1} = H'$ $\forall g \in G$ but I don't know how to continue, because $g$ may not lie in $H$ and $ghg^{-1}h^{-1}$ it's not a commutator.