If
$$f(x)=\begin{cases}e^x+a \sin x& \text{ if } x<0\\ b(x-1)^2+x-2 & \text{ if } x\ge 0\end{cases}$$
Then find the values of $a$ and $b$ given that $f(x)$ is differentiable at $x=0$
I worked out to find that $b=3$. Then using the definition of derivibility of function i get
$Rf'(0)=-5$ and $$Lf'(0)=\lim_{h\rightarrow 0} {{e^{-h}+a\sin(-h)}\over {-h}}$$
so how do i solve $LF'(0)$ ??