Parseval's Theorem states that: If $$f(x)=\sum^\infty_{-\infty}c_ne^{inx}, g(x)=\sum^\infty_{-\infty}\alpha_ne^{inx}.$$ Then, $$\lim_{N\to\infty}\frac{1}{2\pi}\int^\pi_{-\pi}|f(x)-s_N(f;x)|^2dx=0,\frac{1}{2\pi}\int^\pi_{-\pi}f(x)g(x)dx=\sum^\infty_{-\infty}c_n\alpha_n.$$
where $f$ and $g$ are Riemann-integrable functions with a period of $2\pi$.
I don't really understand when it would hold, can somone prove this theorem for me?
Thanks!