$\color{brown}{\textbf{Useful integral.}}$
Denote
$$f(k,m,x)=\int\limits_{-\infty}^\infty\dfrac {t^k}{(3t^2+1)^{m+k+1}}\,e^{itx} \,\text dt\tag1$$
Are known the integrals via the modified Bessel function
$$f(0,m,x)=\sqrt{\dfrac\pi3}\,\dfrac{2}{m!}\,\left|\dfrac x{2\sqrt3}\right|^{m+\frac12}\operatorname K_{\large-\frac12-m}\left(\dfrac{|x|}{\sqrt3}\right),\tag2$$
$$f(1,m,x)=i\,\sqrt{\dfrac\pi3}\,\dfrac{x}{3(m+1)!} \,\left|\dfrac x{2\sqrt3}\right|^{m+\frac12}\operatorname K_{\large-\frac12-m}\left(\dfrac{|x|}{\sqrt3}\right)=\dfrac{ix}{6m+6}\,f(0,m,x).\tag3$$
Besides,
$$f(k+2, m,x)=\int\limits_{-\infty}^\infty\dfrac {t^{k+2}}{(3t^2+1)^{m+k+3}}\,e^{itx} \,\text dt
=\dfrac13\int\limits_{-\infty}^\infty\dfrac {(3t^2+1-1)\,t^k}{(3t^2+1)^{m+k+3}}\,e^{itx} \,\text dt,$$
$$f(k+2,m,x)=\dfrac13\big(f(k,m+1,x)-f(k,m+2,x)\big),$$
$$f(k+4,m,x)=\dfrac19\big(f(k,m+2,x)-2f(k,m+3,x)+f(k,m+4,x)\big),$$
$$f(2k,m,x)=\dfrac1{3^k}\sum\limits_{j=0}^k (-1)^j\dbinom k{j}f(0,m+k+j,x).\tag4$$
$$f(2k+1,m,x)=\dfrac{ix}{3^k}\sum\limits_{j=0}^k \dfrac{(-1)^j}
{6(m+k+j+1)} \dbinom k{j}f(0,m+k+j,x).\tag5$$
In the Matematika language,
$$\begin{align}
&f(k,n+k+1,x)=\dfrac1{2\Gamma[1+k+n]}3^{-1-k} \bigg(3^{\large\frac12+\frac k2} \big(1+(-1)^k\big) \Gamma\left[\frac12+\frac k2\right]\\[4pt]
&\times \Gamma\left[\frac12+\frac k2+n\right]
\,\operatorname{HypergeometricPFQ}\left[\left\{\frac12+\frac k2\right\},\left\{\frac12,\frac12-\frac k2-n\right\},\frac{x^2}{12}\right]\\[4pt]
&-I\, 3^{\large \frac k2} \big(-1+(-1)^k\big)\, x\, \Gamma\left[1+\frac k2\right]\, \Gamma\left[\frac k2+n\right]\\[4pt] &\times\operatorname{HypergeometricPFQ}\left[\left\{1+\frac k2\right\},\left\{\frac32,1-\frac k2-n\right\},\frac{x^2}{12}\right]\\[4pt]
&+2\, I\, 3^{-n} |x|^{1+k+2 n} \Gamma[-1-k-2 n] \Gamma[1+k+n]\\[4pt] &\times\operatorname{HypergeometricPFQ}\left[\{1+k+n\},\left\{1+\frac k2+n,\frac32+\frac k2+n\right\},\frac{x^2}{12}\right]\\[4pt]
&\times \left(\big(-1+(-1)^k\big) \cos\left[\frac {k\pi}2+n\pi\right] \operatorname{Sign}[x]+I \big(1+(-1)^k\big) \sin\left[\frac {k\pi}2+n\pi\right]\right)\bigg)\\
& \,\text{if}\; x\in\mathbb R\;\&\&\;\Re[k]>-1\;\&\&\;\Re[k+2 n]>-2
\end{align}\tag{$\Diamond$}$$
$\color{brown}{\textbf{Integration.}}$
$$I=\int\limits_{-\infty}^\infty\dfrac{1}{3t^2+1}\,\exp\,\dfrac{at^2+ibt}{3t^2+1}\,\,e^{itx} \,\text dt$$
$$=\exp\,\dfrac a3\int\limits_{-\infty}^\infty\dfrac{1}{3t^2+1}\,\exp\left(-\dfrac{a}{3(3t^2+1)}\right)\exp\,\dfrac{ibt}{3t^2+1}\,\,e^{itx} \,\text dt$$
$$=\exp\,\dfrac a3 \sum\limits_{n=0}^\infty\dfrac1{n!}\left(-\dfrac a3\right)^n \sum\limits_{k=0}^\infty\dfrac{(ib)^k}{k!}
\int\limits_{-\infty}^\infty\,\dfrac {t^k}{(3t^2+1)^{n+k+1}}\,e^{itx} \,\text dt,$$
$$I=\dfrac1{\sqrt3}\exp\,\dfrac a3 \sum\limits_{n=0}^\infty\dfrac1{n!}\left(-\dfrac a3\right)^n \sum\limits_{k=0}^\infty\left(-\dfrac13\right) ^{\large\genfrac\lfloor\rfloor{}{}{k+1}2}x^{^{\Large2\genfrac\{\}{}{}k2}} \,\dfrac{b^k}{k!}$$
$$\times \operatorname B\left(\genfrac\lfloor\rfloor{}{}{k+1}2+\dfrac12,n-\genfrac\lfloor\rfloor{}{}{1-k}2+\dfrac12\right)$$
$$\times\operatorname{_1F_2}\left(\genfrac\lfloor\rfloor{}{}{k+1}2+\dfrac12;\,\dfrac12+2\genfrac\{\}{}{}k2,\,\genfrac\lfloor\rfloor{}{}{1-k}2+\dfrac12-n;\dfrac{x^2}{12}\right),$$
and these approximations do not provide sufficient accuracy.
$\color{brown}{\mathbf{Alternative\ approach,\ case\; x=0.}}$
Since
$$g(k)=\int\limits_{-\infty}^\infty\dfrac{(-a+3ibt)^k}{(3t^2+1)^{k+1}}\,\text dt
=\sqrt{\dfrac\pi3}\,\dfrac{\Gamma\left(k+\frac12\right)}{k!}(-a)^k
\operatorname{_2F_1}\left(\frac{1-k}2,-\frac k2;\frac12-k;\frac{3b^2}{a^2}\right),$$
then
$$I\bigg|_{x=0}=\sqrt{\dfrac\pi3}\,\exp\dfrac a3\,\sum\limits_{k=0}^\infty \dfrac{\Gamma\left(k+\frac12\right)}{k!^2}\left(-\frac a3\right)^k \operatorname{_2F_1} \left(\frac{1-k}2,-\frac k2;\frac12-k;\frac{3b^2}{a^2}\right).$$
$\color{brown}{\textbf{Alternative approach, common case.}}$
$$I=\int\limits_{-\infty}^\infty\dfrac{1}{3t^2+1}\,\exp\,\dfrac{at^2+ibt}{3t^2+1}\,\,e^{itx} \,\text dt$$
$$=\exp\,\dfrac a3\int\limits_{-\infty}^\infty\dfrac{1}{3t^2+1}\,\exp\left(-\dfrac{a}{3(3t^2+1)}\right)\exp\,\dfrac{ibt}{3t^2+1}\,\,e^{itx} \,\text dt$$
$$=\exp\,\dfrac a3 \sum\limits_{n=0}^\infty\dfrac{a^n}{n!} \left(-\dfrac13\right)^n\sum\limits_{k=0}^\infty\dfrac{(ib)^{2k}}{(2k)!}
\left(f(2k,n,x)+\dfrac{ib}{2k+1}\,f(2k+1,n.x)\right)$$
$$=2\sqrt{\dfrac\pi3}\exp\,\dfrac a3 \sum\limits_{n=0}^\infty\dfrac{a^n}{n!} \sum\limits_{k=0}^\infty\dfrac{b^{2k}}{(2k)!}\,\left(-
\dfrac13\right)^{n+k}
\sum\limits_{j=0}^k \dfrac{(-1)^j}{(n+k+j)!}\dbinom k{j}$$
$$\times\left(1-\dfrac{bx}{6(2k+1)(n+k+j+1)}\right)
\left|\dfrac x{2\sqrt3}\right|^{n+k+j+\frac12}
\operatorname K_{\large-\frac12-n-k-j}\left(\dfrac{|x|}{\sqrt3}\right).$$
