0

Prove that if $x, y \in \mathbb{R}$ and $| x - y | < \varepsilon$ for all $\varepsilon \in \mathbb{R}$ where $\varepsilon > 0$, then $x = y$.

I have gotten this so far. Any suggestions would be helpful:

$$| x - y | < \varepsilon \implies |x| < |y| + \varepsilon$$

If we assume that $x \neq y$, then $x < \varepsilon$ or $x > \varepsilon$

Therefore, $x > y$, not $x = y$.

Jose Avilez
  • 13,432

1 Answers1

2

Let $x,y\in\mathbb{R}$ with $|x-y|<\epsilon$ for all $\epsilon>0$. Suppose (for a contradiction) that $x\neq y$. Then $|x-y|>0$ so that $|x-y|<|x-y|$, a clear contradiction. It then follows that $x=y$ and we are done.

user829347
  • 3,606
  • 10
  • 32