Prove that if $x, y \in \mathbb{R}$ and $| x - y | < \varepsilon$ for all $\varepsilon \in \mathbb{R}$ where $\varepsilon > 0$, then $x = y$.
I have gotten this so far. Any suggestions would be helpful:
$$| x - y | < \varepsilon \implies |x| < |y| + \varepsilon$$
If we assume that $x \neq y$, then $x < \varepsilon$ or $x > \varepsilon$
Therefore, $x > y$, not $x = y$.