I'm assuming
- $\{X_j\}_{j\in \mathbb{N}}$ is an iid sequence, i.e. they are identically distributed and mutually--not pairwise as you have it-- independent.
- $N$ is independent of $\{X_j\}_{j\in \mathbb{N}}$.
By Adam's Law, the mean of $Y$ is
$$\small \begin{aligned} E\left[\sum_{j=1}^N X_j \right] &=E\left[E\left[\sum_{j=1}^N X_j\Bigg|N \right]\right]\\
&=E\left[\sum_{j=1}^NE\left[ X_j\big|N \right]\right]&&\qquad (\text{linearity of }E[\cdot ])\\
&=E\left[\sum_{j=1}^NE\left[ X_j \right]\right]&&\qquad (N,X_j\text{ indep.})\\
&=E\left[NE\left[ X_1 \right]\right]&&\qquad (\{X_j\}_{j\in \mathbb{N}}\text{ identically distrib.})\\
&=E\left[N\right]E\left[ X_1 \right],&&\qquad (\text{linearity of }E[\cdot ])\end{aligned}$$
which is a special case of Wald's equation.
By Eve's law, the variance of $Y$ is
$$ \small\begin{aligned}\text{Var}\left[\sum_{j=1}^N X_j \right]&=E\left[\text{Var}\left[\sum_{j=1}^N X_j\Bigg|N \right]\right]+\text{Var}\left[E\left[\sum_{j=1}^N X_j\Bigg|N \right]\right]\\
&=E\left[\text{Var}\left[\sum_{j=1}^N X_j\Bigg|N \right]\right]+\text{Var}\left[NE[X_1]\right]&&(\text{see above})\\
&=E\left[\text{Var}\left[\sum_{j=1}^N X_j \right]\right]+\text{Var}\left[NE[X_1]\right]&&(N,\{X_j\}_{j\in \mathbb{N}} \text{ indep.})\\
&=E\left[\sum_{j=1}^N\text{Var}\left[ X_j \right]\right]+\text{Var}\left[NE[X_1]\right]&& (\{X_j\}_{j\in \mathbb{N}} \text{ indep.})\\
&=E\left[N\text{Var}\left[ X_1 \right]\right]+\text{Var}\left[NE[X_1]\right]&& (\{X_j\}_{j\in \mathbb{N}} \text{ identically distrib.})\\
&=E\left[N\right]\text{Var}\left[ X_1 \right]+\text{Var}\left[N\right](E[X_1])^2&& (\text{linearity of } E[\cdot ])\\
&= E\left[N\right]E\left[ X_1^2 \right]+\left(\text{Var}\left[N\right]-E\left[N\right]\right)(E[X_1])^2.
\end{aligned}$$
For $N$ Poisson with rate parameter $\lambda$, we have $E[N]=\text{Var}[N]=\lambda$, so the above simplifies to
$$E[Y]=\lambda E[X_1]\\
\text{Var}[Y]=\lambda E\left[ X_1^2 \right],$$
as obtained in the wiki link.
Note the variance computation required stronger assumptions than the mean computation, which is typically the case to get a nice variance expression.