Problem
This is a continuation of these other two posts: Quadratic-trigonometric integral, Quadratic-trigonometric integral -- part 2.
I'm studying the following integral
\begin{equation*} I_1(t)\triangleq\int_0^{t}\cos\left(c+b\tau+a\tau^2\right)\text{ d}\tau \end{equation*}
where $c,b,a$ and $t$ are given parameters. Note that with respect to the linked posts I've changed the notation for the coefficients of the quadratic polynomial inside the cosine (I've switched $a$ and $c$) and also now I'm considering a simpler problem where the lower bound of the integration is null. For the sake of simplicity, I restrict the attention to the simpler case $a\ge0$.
On one hand I know the solution of the integral above in terms of the Fresnel integrals, which is \begin{equation*}\begin{aligned} I_1(t)&=\left[\textrm{C}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{C}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{cos}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}}\\ &\qquad\qquad-\left[\textrm{S}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{S}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{sin}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}} \end{aligned} \end{equation*} where $\sqrt[+]{\cdot}$ denotes the positive root (I chose it instead of the negative one just for simplicity), while $\textrm{C}(\cdot)$ and $\textrm{S}(\cdot)$ are the Fresnel cosine and sine integrals, i.e. \begin{equation*} \textrm{C}(h)\triangleq \int_0^h \cos\left(\theta^2\right)\text{ d}\theta \qquad \textrm{S}(h)\triangleq \int_0^h \sin\left(\theta^2\right)\text{ d}\theta \end{equation*}
On the other hand I know also the solution of the simpler integral \begin{equation*}I_2(t)\triangleq \int_0^t \cos\left(c+b\tau\right)\text{ d}\tau\end{equation*} which is \begin{equation*} I_2(t)=\sin(bt)\frac{\cos(c)}{b}-\left[1-\cos(bt)\right]\frac{\sin(c)}{b} \end{equation*}
Since the second integral is the limit case where $a=0$, I expect that \begin{equation*}\lim_{a\to0}I_1(t)=I_2(t)\end{equation*} but actually I'm not able to compute the limit $\lim_{a\to0}I_1(t)$ over the solution presented above.
Question
1) My solutions $I_1(t)$ and $I_2(t)$ are correct?
2) Is it true that $\lim_{a\to0}I_1(t)=I_2(t)$? If yes, is it possible to prove it by computing the limit \begin{equation*} \lim_{a\to0}\left[\textrm{C}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{C}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{cos}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}}-\left[\textrm{S}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{S}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{sin}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}} \end{equation*}
Derivation of the solution of $I_2(t)$
\begin{equation*} \begin{aligned} I_2(t)&=\int_0^t \cos(c)\cos(b\tau)-\sin(c)\sin(b\tau) \text{d}\tau\\ &=\left[\int_0^{bt}\cos(h)\frac{\text{d}h}{b}\right]\cos(c)-\left[\int_0^{bt}\sin(h)\frac{\text{d}h}{b}\right]\sin(c)\\ &=\left[\sin(h)|_0^{bt}\right]\frac{\cos(c)}{b}-\left[-\cos(h)|_0^{bt}\right]\frac{\sin(c)}{b}\\ &=\sin(bt)\frac{\cos(c)}{b}-\left[1-\cos(bt)\right]\frac{\sin(c)}{b}\\ \end{aligned} \end{equation*}
Derivation of the solution of $I_1(t)$
Let \begin{equation*} q_1\triangleq a \qquad q_2\triangleq -\frac{b}{2a} \qquad q_3\triangleq c-\frac{b^2}{4a} \end{equation*} so \begin{equation*}\begin{aligned} I_2(t)&=\int_0^t \cos\left[q_1(\tau-q_2)^2+q_3\right]\text{ d}\tau\\ &=\left[\int_0^t \cos\left[q_1\left(\tau-q_2\right)^2\right]\text{d}\tau\right]\cos(q_3)-\left[\int_0^t \sin\left[q_1\left(\tau-q_2\right)^2\right]\text{d}\tau\right]\sin(q_3)\\ &=\left[\int_{-\sqrt[+]{q_1}q_2}^{\sqrt[+]{q_1}(t-q_2)} \cos(h^2)\frac{\text{d}h}{\sqrt[+]{q_1}}\right]\cos(q_3)-\left[\int_{-\sqrt[+]{q_1}q_2}^{\sqrt[+]{q_1}(t-q_2)} \sin(h^2)\frac{\text{d}h}{\sqrt[+]{q_1}}\right]\sin(q_3)\\ &=\left[\textrm{C}\left(\sqrt[+]{q_1}(t-q_2)\right)-\textrm{C}\left(-\sqrt[+]{q_1}q_2\right)\right]\frac{\cos(q_3)}{\sqrt[+]{q_1}} -\left[\textrm{S}\left(\sqrt[+]{q_1}(t-q_2)\right)-\textrm{S}\left(-\sqrt[+]{q_1}q_2\right)\right]\frac{\sin(q_3)}{\sqrt[+]{q_1}}\\ &=\left[\textrm{C}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{C}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{cos}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}}\\ &\qquad\qquad-\left[\textrm{S}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{S}\left(\frac{b}{2\sqrt[+]{a}}\right)\right]\frac{\textrm{sin}\left(c-\frac{b^2}{4a}\right)}{\sqrt[+]{a}} \end{aligned}\end{equation*}
Attempt to compute the limit
Honestly, I don't have a clue on how to compute the limit. The only thing that I'm able to write is the following \begin{equation*} \lim_{a\to0} I_1(t)=\lim_{a\to0}\left\{\frac{\Delta\textrm{C}}{\sqrt[+]{a}}\left[\cos(c)\cos\left(\frac{b^2}{4a}\right)+\sin(c)\sin\left(\frac{b^2}{4a}\right)\right]- \frac{\Delta\textrm{S}}{\sqrt[+]{a}}\left[\sin(c)\cos\left(\frac{b^2}{4a}\right)-\cos(c)\sin\left(\frac{b^2}{4a}\right)\right] \right\}\end{equation*} where \begin{equation*}\begin{aligned} \Delta\textrm{C}&\triangleq\textrm{C}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{C}\left(\frac{b}{2\sqrt[+]{a}}\right)\\ \Delta\textrm{S}&\triangleq\textrm{S}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{S}\left(\frac{b}{2\sqrt[+]{a}}\right)\\ \end{aligned} \end{equation*} here the problems that arise when $a\to0$ are the following:
- $\Delta \textrm{C}/\sqrt[+]{a}$, $\Delta \textrm{S}/\sqrt[+]{a}$ are undetermined forms $0/0$, which, if my conjecture that the final result is $I_2(t)$, they must converge to a finite limit;
- $\cos(b^2/(4a))$, $\sin(b^2/(4a))$ does not exists, and so, if my conjecture is true, they must disappear from the expression with some trick.
Probably there is some property of the Fresnel integrals (that actually I don't know) that can be used to solve the limit above.
EDIT
I've made a progress, but I still have some problems.
I've noticed that when $a\to0$ the ratios $\Delta \text{C}/\sqrt[+]{a}$, $\Delta \text{S}/\sqrt[+]{a}$ highly resembles the derivatives of $\textrm{C}(\cdot)$ and $\textrm{S}(\cdot)$. In particular, if I'm not wrong, \begin{equation*}\begin{aligned} \lim_{(\sqrt[+]{a} t)\to0} \frac{\Delta \textrm{C}}{\sqrt[+]{a}t}&=\lim_{(\sqrt[+]{a} t)\to0}\frac{\textrm{C}\left(\sqrt[+]{a}t+\frac{b}{2\sqrt[+]{a}}\right)-\textrm{C}\left(\frac{b}{2\sqrt[+]{a}}\right)}{\sqrt[+]{a} t} =\lim_{(\sqrt[+]{a} t)\to0}\frac{\textrm{C}\left(\sqrt[+]{a}t+\frac{bt}{2\sqrt[+]{a}t}\right)-\textrm{C}\left(\frac{bt}{2\sqrt[+]{a}t}\right)}{\sqrt[+]{a} t} \\ &=\frac{\text{d}\textrm{C}}{\text{d}h}\bigg|_{h=\frac{bt}{2\sqrt[+]{a}t}} =\cos\left[\left(\frac{bt}{2\sqrt[+]{a}t}\right)^2\right]= \cos\left(\frac{b^2}{4a}\right) \end{aligned} \end{equation*} and in the same way \begin{equation*}\begin{aligned} \lim_{(\sqrt[+]{a} t)\to0} \frac{\Delta \textrm{S}}{\sqrt[+]{a}t}= \sin\left(\frac{b^2}{4a}\right) \end{aligned} \end{equation*} note that here this two results are quite doubtful because the point $b/\sqrt[+]{a}t$ where are evaluated the derivatives is not fixed during the computation of the limit $\sqrt[+]{a}t\to0$.