I need to calculate the following sum:
$\sum_{x=0}^y x\binom{y}{x}\alpha^x(1-\alpha)^{y-x}$
i know it equals: $\alpha y$, but I don't know how to calculate it exactly.
My steps: $\sum_{x=0}^y x\binom{y}{x}\alpha^x(1-\alpha)^{y-x}=\sum_{x=0}^y \frac{x\alpha^x(1-\alpha)^{y-x}\cdot y!}{x!(y-x)!}=\sum_{x=0}^y \frac{\alpha^x(1-\alpha)^{y-x}\cdot y!}{(x-1)!(y-x)!}$
Is it correct?