I'm trying to generalize the following isomorphisms:
$$\frac{F[x]}{\langle x^2\rangle} \cong \{{\begin{bmatrix} a_0 & a_1 \\ 0 & a_0 \\ \end{bmatrix} \text{such that } a_i \in F \text{ for all i} }\}$$
$$\frac{F[x]}{\langle x^3\rangle} \cong \{{\begin{bmatrix} a_0 & a_1 & a_2 \\ 0 & a_0 & a_1 \\ 0 & 0 & a_0 \end{bmatrix} \text{such that } a_i \in F \text{ for all i} }\}$$
to any $n$
And i'm trying to do so as cleanly and efficiently as possible....
Since $x^n$ is a monic polynomial, we have that: $$\frac{F[x]}{\langle x^n\rangle} \cong \{a_0+a_1t+...a_{n-1}t^{n-1} | a_i \in F \text{ and } t^n=0\}$$
So, an arbitrary element of $\frac{F[x]}{\langle x^n\rangle}$ can be written as: $$a(x) = a_0+a_1t+...+a_{n-1}t^{n-1}.$$
Now, I will define the proposed ring isomorphism by:
$\gamma(a(x)) = (a_{i,j})$
where $(a_{i,j}) = \begin{cases} a_{i,i}=a_0 & 1 \leq i \leq n \\ a_{i,i+1}=a_1 & 1\leq i\leq n-1 \\ ..... & .....\\ a_{i,i+k}=a_k & 1\leq i\leq n-k \\ ..... & .....\\ a_{i,i+(n-2)}=a_{n-2} & 1\leq i\leq 2 \\ a_{i,i+(n-1)}=a_{n-1} & i=1\\ 0 & i>j \end{cases}$
Since $\gamma(a(x))=I \rightarrow a(x) = 1$, this map is injective. Thus this map is bijective onto it's image, and the image of this map generalizes the cases of $n=2$ and $n=3$.
Also, notice that given $a(x),b(x) \in \frac{F[x]}{\langle x^n\rangle}$, we that that:
$$a(x)b(x) = \Sigma_{k=0}^{n-1} \Sigma_{i+j=k}a_ib_jt^{i+j}$$ Thus, we have that:
$\gamma(a(x)b(x)) = \gamma(\Sigma_{k=0}^{n-1} \Sigma_{i+j=k}a_ib_jt^{i+j})=$
$$\begin{cases} a_{i,i}=\Sigma_{i+j=0}a_ib_j & 1 \leq i \leq n \\ a_{i,i+1}=\Sigma_{i+j=1}a_ib_j & 1\leq i\leq n-1 \\ ..... & .....\\ a_{i,i+k}=\Sigma_{i+j=k}a_ib_j & 1\leq i\leq n-k \\ ..... & .....\\ a_{i,i+(n-2)}=\Sigma_{i+j=n-2}a_ib_j & 1\leq i\leq 2 \\ a_{i,i+(n-1)}=\Sigma_{i+j=n-1}a_ib_j & i=1\\ 0 & i>j \end{cases}$$
Now, I'm trying to show that $\gamma(a(x))\gamma(b(x))$ has the same form and thus show that the proposed map preserves the ring multiplication. I can see why this is true, but I've been having trouble writing it up cleanly and would appreciate some help! Thanks