Let $A$ be a unital Banach algebra (for example $\mathcal{L}(E)$ with operator multiplication) and let $a \in A$ satisfy $||a|| < 1$. Set $S_n=\sum_{k=0}^{n}a^k$ and note that
$||S_n-S_m||=||\sum_{k=m+1}^{n}a^k|| \leq \sum_{k=m+1}^{n}||a||^k \to 0, \quad n,m \to \infty.$
Thus, $\lbrace S_n \rbrace_{n=0}^{\infty}$ is Cauchy, and so converges in $A$, since $A$ is Banach. Denote the limit of $\lbrace S_n \rbrace_{n=0}^{\infty}$ by $s$. Then
$s(1-a)=\text{lim}_{n \to \infty} S_n(1-a)=\text{lim}_{n \to \infty} 1-a^{n+1}=1$,
and similarly you get $(1-a)s=1$. So $1-a$ is invertible with inverse
$(1-a)^{-1}=s=\sum_{k=0}^{\infty}a^k$.
Now let $a \in A^{-1}$, where $A^{-1}$ denotes the set of invertible elements in $A$. Let $b \in A$ satisfy $||a-b|| < 1/||a^{-1}||$ so that $||1-a^{-1}b||<1$. By the preceeding argument, you have that $c=a^{-1}b$ is invertible with inverse $c^{-1}$. Let $h=c^{-1}a^{-1}$. Then
$hb=(c^{-1}a^{-1})b=c^{-1}(a^{-1}b)=c^{-1}c=1$,
and also
$bh=bc^{-1}a^{-1}=acc^{-1}a^{-1}=1$.
Thus, $b \in A$ is invertible with inverse $b^{-1}=h\in A$.