First, note $n(1) + \cdots + n(R)$ is the number of integer triples $(x,y,z)$ such that $2x^2+3y^2+5z^2 \leq R$. Let's call this count $N(R) = n(1) + \cdots + n(R)$.
We can also consider the inequality $2x^2+3y^2+5z^2 \leq R$ as a statement about four real variables, not restricted to integers only, but requiring $R \geq 0$. In this case, it describes the surface and interior of an ellipsoid. We can find its semi-axis lengths by converting to the form:
$$ \left(\frac{x}{\sqrt{R/2}}\right)^2 + \left(\frac{y}{\sqrt{R/3}}\right)^2 + \left(\frac{z}{\sqrt{R/5}}\right)^2 \leq 1 $$
Name the semi-axis lengths $a=\sqrt{R/2}, b=\sqrt{R/3}, c=\sqrt{R/5}$, and the bounding equality has standard form $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
Intuitively, we expect the number of integer points $N(R)$ satisfying the inequality to be approximately the volume of the ellipsoid, $V(R) = \frac{4}{3}\pi a b c = \frac{2}{45} \sqrt{30} \pi R^{3/2}$. This would make the limit of $\frac{N(R)}{R^{3/2}}$ equal to $\frac{2}{45} \sqrt{30} \pi$.
Now to rigorously show $N(R)$ does converge to that limit. With each integer triple $(x,y,z)$ with $x,y,z \in \mathbb{Z}$, associate the unit cube $c(x,y,z) \subset \mathbb{R}^3$:
$$ c(x,y,z) = \left[x-\frac 12, x+\frac 12\right] \times \left[y-\frac 12, y+\frac 12\right] \times \left[z-\frac 12, z+\frac 12\right] $$
Or equivalently,
$$ c(x,y,z) = \left\{(x', y', z') \in \mathbb{R}^3 : |x'-x| \leq \frac 12 \mbox{ and } |y'-y| \leq \frac 12 \mbox{ and } |z'-z| \leq \frac 12 \right\} $$
These each have volume $1$ and their overlaps have volume $0$, so $N(R)$ is the volume of the set of all cubes associated with the integer solutions to $2x^2 + 3y^2 + 5z^2 \leq R$. If $(x,y,z)$ is one of these solutions, then
$$ 2x^2+3y^2+5z^2 \leq R $$
$$ |x| \leq \sqrt{R/2} \quad |y| \leq \sqrt{R/3} \quad |z| \leq \sqrt{R/5} $$
Let $(x',y',z') \in c(x,y,z)$. Define $F(x',y',z')$:
$$ \begin{align*}
F(x',y',z') &= 2x'^2 + 3y'^2 + 5z'^2 \\
F(x',y',z') &\leq 2 \left(|x|+\frac{1}{2}\right)^2 + 3 \left(|y|+\frac{1}{2}\right)^2 + 5 \left(|z|+\frac{1}{2}\right)^2 \\
F(x',y',z') &\leq 2x^2 + 3y^2 + 5z^2 + 2|x| + 3|y| + 5|z| + \frac{2+3+5}{4} \\
F(x',y',z') &\leq R + \sqrt{2R} + \sqrt{3R} + \sqrt{5R} + \frac{5}{2} \\
F(x',y',z') &< R + (2+2+3)\sqrt{R} + \frac{5}{2} \\
F(x',y',z') &< R + 7\sqrt{R} + 3 \\
\end{align*} $$
So letting $R_U = R+7\sqrt{R}+3$, $c(x,y,z)$ is within the interior of a larger ellipsoid solid:
$$ 2x'^2+3y'^2+5z'^2 < R_U $$
Since all the cubes $c(x,y,z)$ with $2x^2+3y^2+5z^2 \leq R$ are inside this ellipsoid, $N(R)$ is less than its volume:
$$ N(R) < \frac{2}{45}\sqrt{30} \pi R_U^{3/2} $$
$$ \frac{N(R)}{R^{3/2}} < \frac{2}{45}\sqrt{30} \pi \left(\frac{R+7\sqrt{R}+3}{R}\right)^{3/2} = \frac{2}{45}\sqrt{30} \pi \left(1+\frac{7}{\sqrt{R}}+\frac{3}{R}\right)^{3/2} $$
Now suppose $x,y,z$ are integers such that $2x^2+3y^2+5z^2 > R$, and $(x',y',z') \in c(x,y,z)$. If $x \neq 0$ then
$$ |x'| \geq |x|-\frac{1}{2} > 0 $$
$$ x'^2 \geq x^2-|x|+\frac{1}{4} \geq x^2-|x| $$
Or if $x=0$, it's still true that $x'^2 \geq x^2-|x|$, so this holds for any integer $x$. Similarly, we have $y'^2 \geq y^2-|y|$ and $z'^2 \geq z^2-|z|$.
$F(x',y',z')$ is the same formula as above:
$$ \begin{align*}
F(x',y',z') &= 2x'^2+3y'^2+5z'^2 \\
F(x',y',z') &\geq 2x^2+3y^2+5z^2 - 2|x|-3|y|-5|z| \\
F(x',y',z') &> R - 2\sqrt{R/2} - 3\sqrt{R/3} - 5\sqrt{R/5} \\
F(x',y',z') &> R - \sqrt{2R} - \sqrt{3R} - \sqrt{5R} \\
F(x',y',z') &> R - 7\sqrt{R}
\end{align*} $$
So letting $R_L = R - 7\sqrt{R}$, all the cubes $c(x,y,z)$ with $2x^2+3y^2+5z^2 > R$ are within the exterior of a smaller ellipsoid solid:
$$ 2x'^2+3y'^2+5z'^2 > R_L $$
So the ellipsoid is entirely inside the union of the $N(R)$ cubes where $2x^2+3y^2+5z^2 \leq R$, and $N(R)$ is larger than its volume:
$$ N(R) > \frac{2}{45}\sqrt{30} \pi R_L^{3/2} $$
$$ \frac{N(R)}{R^{3/2}} > \frac{2}{45}\sqrt{30} \pi \left(\frac{R-7\sqrt{R}}{R}\right)^{3/2} = \frac{2}{45}\sqrt{30} \pi \left(1-\frac{7}{\sqrt{R}}\right)^{3/2} $$
Finally we can apply the squeeze theorem. For any non-negative integer $R$,
$$ \frac{2}{45}\sqrt{30} \pi \left(1-\frac{7}{\sqrt{R}}\right)^{3/2} < \frac{N(R)}{R^{3/2}} < \frac{2}{45}\sqrt{30} \pi \left(1+\frac{7}{\sqrt{R}}+\frac{3}{R}\right)^{3/2} $$
Both bounds approach $\frac{2}{45}\sqrt{30} \pi$ as $R \to \infty$, so the limit does indeed exist with that value.