Let $A$, $B$, and $A_\alpha$ denote subsets of a space $X$. Prove the following: (a) If$A\subseteq B$,then$\overline{A} \subseteq \overline{B}$. (b) $\overline{A\cup B}=\overline{A}\cup \overline{B}$. (c) $\overline{ \bigcup A_{\alpha}} \supset \bigcup \overline{A_\alpha }$ ; give an example where equality fails.
My attempt: (a) $A\subseteq B \subseteq \overline{B}$. Since $\overline{B}$ is closed and $A\subseteq \overline{B}$, we have $\overline{A} \subseteq \overline{B}$. Is this proof correct? If you think last step is bit of a jump, you can look at https://courses-archive.maths.ox.ac.uk/node/view_material/50743 lecture notes, page no. 6.
(b) Approach(1): We first show $(A\cup B)’ = A’ \cup B’$. Let $x\in (A\cup B)’ \Rightarrow \forall U\in \mathcal{N}_x, (U-\{x\})\cap (A\cup B)\neq \phi$. By De Morgan's laws, $[(U-\{x\}) \cap A] \cup [(U-\{x\})\cap B]\neq \phi$. Which means $(U-\{x\}) \cap A$ or $(U-\{x\})\cap B$ or both is non empty. By definition of limit point, $x\in A’$ or $x\in B’$. So $x\in A’ \cup B’$. Thus $(A\cup B)’\subseteq A’\cup B’$.
Conversely, $x\in A’ \cup B’$. If $x\in A’$, then $\forall U\in \mathcal{N}_x, (U-\{x\})\cap A\neq \phi$. So $(U-\{x\})\cap (A\cup B)= [(U-\{x\}) \cap A] \cup [(U-\{x\})\cap B]\neq \phi$. Thus $x\in (A\cup B)’$. Similarly, if $x\in B’$, then $x\in (A\cup B)’$. Hence $(A\cup B)’ = A’ \cup B’$. So $\overline{A\cup B}= (A\cup B) \cup (A\cup B)’= (A\cup A’) \cup (B\cup B’)= \overline{A} \cup \overline{B}$. Is this proof correct? In proof of $(A\cup B)’ \subseteq A’ \cup B’$ what if, for one neighbourhood of $x$,$(U-\{x\}) \cap A$ is non empty and for some other neighbourhood it’s empty?
Approach(2): let $x\in \overline{A\cup B}$. Then $\forall U\in \mathcal{N}_x, U\cap (A\cup B)\neq \phi$. So $(U\cap A)\cup (U\cap B)\neq \phi$. Rest of the proof is similar to approach(1). I’m facing the same problem as approach(1). Is this proof correct?
Approach(3): To show $\overline{A\cup B} \subseteq \overline{A}\cup \overline{B}$. $\overline{A}$ and $\overline{B}$ is closed in $X$. So $\overline{A}\cup \overline{B}$ is closed in $X$. $A\subseteq \overline{A}$ and $B\subseteq \overline{B}$. So $A\cup B\subseteq \overline{A}\cup \overline{B}$. Hence $\overline{A\cup B} \subseteq \overline{A}\cup \overline{B}$.
Approach(4): Since $A\cup B\subseteq \overline{A} \cup \overline{B}$, by part(a) $\overline{A\cup B} \subseteq \overline{ \overline{A} \cup \overline{B} }$. Since $\overline{A} \cup \overline{B}$ is closed, it’s equal to it’s closure. Thus $\overline{A\cup B} \subseteq \overline{A} \cup \overline{B}$.
(C) Let $x\in \bigcup \overline{A_\alpha}$. $x\in \overline{A}_j$. So $\forall U\in \mathcal{N}_x, U\cap A_j \neq \phi$. Since $A_j \subseteq \bigcup A_\alpha$, we have $U\cap A_j \subseteq U\cap (\bigcup A_\alpha)$. Since $\exists p\in U\cap A_j$, $p\in U\cap (\bigcup A_\alpha)$. So $U\cap (\bigcup A_\alpha)\neq \phi$. Thus $x\in \overline{\bigcup A_\alpha}$. Hence $\overline{ \bigcup A_{\alpha}} \supset \bigcup \overline{A_\alpha }$.