This is an example of a quadratic form
$$x_1 x_2 + x_1x_3=(x_1,x_2,x_3)\begin{pmatrix}0&\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&0&0\\\frac{1}{2}&0&0\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}.$$
How could I represent polynomials of degree $4$ by a matrix using linear $x_i$? I do not want to use $x_i x_j$ as left and right vectors. Do I have to use a 4-dimensional $4\times4\times4\times4$-matrix, if such a definition exists? Of course, I would need the inverse and transpose of such a construction.
$$x_1 x_2 x_3 x_4+ x_1 x_3 x_4^2=(x_1,x_2,x_3,x_4)\begin{pmatrix}&\\4\times4\times4\times4\\\text{matrix?}\\&\end{pmatrix}\begin{pmatrix}x_1\\ x_2 \\x_3 \\x_4\end{pmatrix}?$$
Or can I write a quartic polynom as a product of 2 quadratics that can then be joined to a single matrix?
$$x_1 x_2 x_3 x_4+ x_1 x_3 x_4^2=\left[(x_1,x_2,x_3,x_4)\begin{pmatrix}&\\4\times4\\\text{matrix1?}\\&\end{pmatrix}\begin{pmatrix}x_1\\ x_2 \\x_3 \\x_4\end{pmatrix}\right]\left[(x_1,x_2,x_3,x_4)\begin{pmatrix}&\\4\times4\\\text{matrix2?}\\&\end{pmatrix}\begin{pmatrix}x_1\\ x_2 \\x_3 \\x_4\end{pmatrix}\right]$$