3

Let $M$ be an $n \times n$ matrix, $N = \{1, \dots , n \}$ and $V \subseteq N$. Let $M^{(V)}$ denote the submatrix $(m_{i,j})$ of $M$ with $i,j \in V$. Prove that

  1. $$\det(Y-\iota I_n)^{(U)}=\sum_{W\subseteq U} (-\iota)^{card(W)} \det(Y^{(U-W)})$$ where $U \subseteq \{1, \dots , n\}$ https://en.wikipedia.org/wiki/Laplace_expansion

  2. If $Y$ is a regular(invertible) ($n \times n$)-matrix over some arbitrary field $K$ and $U \subseteq \{1, \dots , n\}$ and $\bar U=\{1, \dots , n\}-U.$ then

$$\det(Y^{(U)})=\det(Y^{-1})^{(\bar U)} \det(Y)$$ I don't know how to prove these statements, please help!

Manish Saini
  • 590
  • 3
  • 12

0 Answers0