I'm not very confident with Galois Theory, so sorry if these are basics questions and there are 5 questions. $K$ is an algebraic cubic number field, and we fix an algebraic closure of rationals $\overline{\mathbb{Q}}$. With $ K^{Gal}$ I denote the Galois closure of $ K $. With $ \operatorname{Hom}_{\mathbb{Q}}(K,\overline{\mathbb{Q}}) $ the set of embeddings, and $ \sigma $ it is always an embendding $ \sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\overline{\mathbb{Q}})$.
Q1. Clearly if $ \sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\overline{\mathbb{Q}}) $ then $ \sigma(K) $ and $K$ are conjugates fields (isomorphic). It is possible that there is a field $K'$ isomorphic to $K$ but for which it is not equal to $ \sigma(K)$ for any $ \sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\overline{\mathbb{Q}}) $ ??
Q2. I don't get why $ [ K^{Gal} : \mathbb{Q} ]=6$ with Galois group hence that is isomorphic to $S_3$.
Q3. If $K= \mathbb{Q}(\theta)$ it is true that $ K= \mathbb{Q}(\sigma(\theta)) $ (equal not just isomorphic) when $K/\mathbb{Q} $ is a Galois extension, if yes why?
Q4. If $K= \mathbb{Q}(\theta)$ but the $K/\mathbb{Q}$ is not a Galois extension then it is true that $ K $ is isomorphic to $ \mathbb{Q}(\sigma(\theta)) $?
Q5. The element of $ K^{Gal}$ that are invariant under the Galois group of $ K^{Gal} $ are only the element of $\mathbb{Q} $ ?
Q6. These question (except Q2. of course) have same answer if $K$ is not a cubic number field but an arbitrarly number field?